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Abstract 
This dissertation considers the process of code generation in a compiler: the task of 

transforming a program stored in some form of high level representation into a series 

of instructions in a low level language suitable for execution by a machine such as a 

computer. The problem is interpreted as one of computer program induction and 

optimisation. 

 

The evolutionary computation method Linear Genetic Programming (LGP) is adapted 

for this task by use of a novel fitness function based upon methods a human 

programmer may consider to be good practice. 

 

Two methods are considered, that of direct application of LGP and a second method 

which attempts to accelerate the process by subdividing the input program into 

smaller sections. The methods are compared and contrasted by considering the 

required computational effort to produce a solution to a series of sample programs, 

and the distribution of program lengths that result. 

 

The dissertation concludes that LGP alone is not currently a suitable method for the 

task of code generation, but may act as a useful optimisation tool within some larger 

system. 
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1 Introduction 
This dissertation investigates several methods for using Linear Genetic Programming 

(LGP) to augment the code generation phase of a software compiler, improving the 

ability of the compiler to transform an input program written in a high level language 

into the most optimal machine code form given the available functionality of the 

target architecture. 

 

1.1 Software Compilers 

Compilers are computer programs that translate one language to another (Louden, 

1997). The purpose of a software compiler is to transform an input program in the 

form of some high-level, human readable language to an output program in the form 

of object code or machine code executable by some real processor or virtual machine.  

 

High level programming languages are designed to allow the programmer to specify 

the solution to a problem in terms approximating those of the problem space 

(Wexelblat, 1981). For example, a high level language may allow the programmer to 

group multiple pieces of data into an aggregate data structure representing some 

object from the problem space. The programmer is then able to write programs that 

manipulate instances of these aggregate data structures without any manual 

manipulation of processor elements such as the register file or the stack. These 

features are provided through abstraction: it is the responsibility of the compiler to 

provide the transformation from high level language features into instructions 

executable by the target machine. Examples of high level languages include BASIC, 

C, C++ and Pascal. 

 

Conversely, low level languages require the programmer to specify programs in 

terms of the exact operations to be performed by the target machine. A typical 

example of a low level language is assembly language. Assembly language acts as a 

wrapper above the level of machine code instructions, providing features to aid 

editing by a human programmer such as human-readable instruction mnemonics and 

sub-routine constructs. 

 

The design of a program written in a low level language will be influenced by the 

constructs provided by the language, which in turn will be influenced by the 

properties of the target machine, such as the instruction set and makeup of the register 

file. The programmer may choose to take advantage of accelerated features unique to 

the target architecture, and the ability to address the functionality of the target 

machine directly can allow for more optimised code than would be automatically 

produced by compiler software.  

 

Programs written in low level languages may be more difficult to maintain than those 

written in a high level language due to the low level program’s reliance on the 
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properties of the target machine. Such programs are not as easily ported between 

architectures as programs written in a high level language. 

 

If the program is heavily optimised, the overall objective of a given piece of code 

may become unclear upon review. Examples of this include specialised mathematical 

routines that provide approximations to common functions through unintuitive 

exploitation of the layout of floating point numbers within memory, such as ‘fast 

inverse square root’ (Lomont, 2003).  

 

Almost all commercial software is written in a high level language, and is 

transformed into binary executables by means of a software compiler. It is very rare 

for machine code to be directly manipulated by a human programmer, except for the 

development of software for uncommon architectures where a compiler may not be 

available, or in the design of programs which meta-manipulate machine code, such as 

the assembler function of a compiler. As such, a considerable amount of research has 

been invested in improving the quality and efficiency of compiler software. 

 

Where compilers are available, they may not be fully able to automatically exploit 

specialised functionality available to advanced architectures. This functionality 

includes complex vector mathematics, and operations on large homogeneous data 

sets. These functions are highly valuable in applications such as image and sound 

processing. For this specialised functionality to be used effectively, the programmer 

must manually design the software to use these functions and invoke it explicitly. 

Regardless of whether this invocation is triggered from code written in a high level or 

low level language, this places a dependency on the architecture, making it harder to 

reuse the same software elsewhere. 

 

It is highly desirable to investigate methods where compilers can be augmented with 

the ability to automatically identify opportunities to optimise programs by using 

specialised functionality where appropriate. With this capability available, a 

programmer would be free to use to specify solution programs in a high level 

language and rely on the compiler to correctly transform this program into the most 

optimal machine code possible, given the available functionality of the target 

architecture. 

 

We now consider the various stages performed by a typical software compiler: 

 

The parsing and lexical analysis stages transform a human-readable plain-text input 

program (source code) written in a high level language into an intermediate 

representation (IR). The IR is a machine manipulable expression of the input program 

in terms of the constructs provided by the high level language, such as the structure 

of statements, variable names and control structures. A ‘symbol table’ is produced as 

part of the IR containing information describing the type, scope and other properties 
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of the variables and symbolically named entities appearing in the source code. These 

stages are sometimes collectively referred to as the ‘front end’ of a compiler. 

 

The ‘code generation’ phase of compilation transforms the IR into some form of 

linear assembly language or machine code for the target architecture. This phase is 

sometimes referred to as the ‘back end’ of a compiler. It is during this phase that 

much of the high level nature of the input program such as the presence of high level 

control structures is dissolved, and the properties and capabilities of the target 

architecture become a significant factor in the selection of instructions. Many 

optimisations may be performed at this stage, such as the elimination of intermediate 

variables and common sub-expression elimination. Therefore, the optimality of the 

output object code is highly dependent on the sophistication of the techniques used 

during the code generation phase. It is the code generation phase of compilation that 

will be considered in detail in this dissertation. 

 

1.2 Genetic Programming 

Genetic Programming (GP) (Koza, 1992) is an evolutionary computation technique 

that can automatically solve problems without requiring the user to know or specify 

the form or structure of the solution in advance (Poli, et. al., 2008).  

 

Evolutionary computation techniques such as GP can be used to automatically induce 

solutions in the form computer programs, given a high level statement of the problem 

to be solved and a method for calculating the suitability, or ‘fitness’, of a given 

candidate solution and a criterion indicating when a sufficiently suitable program has 

been found. Solution programs are produced through a search the space of possible 

computer programs using a model of evolution through natural selection. GP 

typically works upon, and produces, tree structures, such as the S-Expressions used in 

the LISP language or other graph-based structures. 

 

The GA algorithm typically proceeds as follows. First, a pool of random candidate 

programs is generated. Then, the fitness of each of these programs is calculated. A 

new ‘generation’ of candidate programs is produced by repeatedly selecting several 

highly suitable candidate programs to participate in ‘crossover’ or ‘mutation’ 

operations. The crossover operation combines parts of two parent programs to 

produce a ‘child’ program. The mutation operation produces a new program by 

randomly altering some component of a parent program. The fitness of each of the 

new generation of candidate programs is then calculated and the process is repeated 

until a candidate program of sufficient fitness is evolved. The crossover and mutation 

operations do not perform any analysis on the parent programs to select the most 

productive method to produce a child program; they are applied randomly. It is the 

intention that, by manipulating those programs that are observed to be the most fit, 

candidate solutions of successively better fitness can be produced with each 

generation until an acceptable solution is found. 
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Linear Genetic Programming (LGP) is an adaptation of GP techniques for use in 

working on linear structures. As such, it is suitable for the direct manipulation of 

assembly language (Cramer, 1985) or machine code instructions (Nordin, 1994, 

1997). It is proposed that LGP may provide a means to accelerate or augment the 

code generation phase of compiler software. 

 

1.3 Application of Linear Genetic Programming 

In this project, two methods of applying LGP are investigated: the use of LGP as a 

method for performing code generation given an IR; and the use of LGP as a method 

for optimising low level code it has generated. 

 

In the case of using LGP to perform code generation, the objective of the LGP system 

is to evolve a candidate solution in a low level language that has the same semantics 

as an input program given in the form of a parse tree. In the case of using LGP as a 

method for optimising low level code, the objective of the LGP system is to evolve a 

candidate solution that has greater fitness (or some other desirable quality such as 

reduced program length) than the input program given in the form of a low level 

language solution. Ten simple input programs are considered; these are given as an 

appendix together with a discussion of how each program may be considered by the 

LGP system and an ‘optimal’ low level solution program listing. 

 

The primary problem that must be solved to enable the application of LGP in any 

scenario is the definition of a ‘fitness function’, a function allowing the LGP system 

to calculate the fitness of a given candidate solution. The fitness function must have 

some extent of graduation for the LGP system to function effectively; the system 

requires the ability to identify the ‘more correct’ of two candidate solutions. Without 

a graduated fitness function, the LGP system only has the ability to identify a wholly 

correct solution and cannot encourage the creation of successively fitter programs. 

The problem of identifying a suitable fitness function for the task of code generation 

has not been widely studied previously. 

 

The fitness function proposed in this project takes the form of an analysis of the 

actions taken by a candidate solution program. The candidate solution is run in a 

virtual machine and each step of its execution recorded. This record is compared 

against a record representing the ‘ideal’ execution, produced by running the parse tree 

representation of the input program in an interpreter. Where the two records indicate 

that the same (or similar) calculations are being attempted, the candidate solution is 

rewarded. 

 

In addition, a candidate solution is rewarded for taking actions that are designated as 

being of a productive type. This category includes actions that a human programmer 

would employ, such as loading a value from an input variable and storing a value to 
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an output variable. A candidate solution is punished for taking actions that are 

designated as being of a non-productive type. This category includes actions that a 

human programmer would avoid, such as assigning a value to a register twice in 

succession without having read it in the interval, and reading values from registers 

that have not yet been initialised with a value. 

 

These two methods are designed to provide a graduated fitness function that 

encourages the gradual assembly of programs in a similar manner to how a human 

programmer may attempt to solve the problem. However, the LGP system is not 

restricted to simply assembling the program as a mechanical, statement by statement 

translation of the input program; the system may combine candidate solutions freely 

using the genetic operators. As a result, a correct candidate solution may arise which 

has the appropriate semantics but achieves this in an unexpected way (reversed order 

of statements, selection of unusual instructions, etc.), a property typical of programs 

produced by a GP system. 

 

In applying LGP as a method for code generation, two models are considered: 

‘standard’ and ‘incremental’. In the ‘standard’ method, the LGP system is directed to 

evolve a single solution program exhibiting the full semantics of the input program. 

In the ‘incremental’ method, the input program is disassembled into smaller 

programs, and the LGP system is directed to evolve a solution program to each of 

these in turn. The partial solutions are then combined to produce a single solution 

program which will exhibit the same semantics as the complete input program. 

 

These methods are compared using two measurements. The first is the 

‘computational effort’, the number of low level instructions that must be executed in 

the virtual machine in order to evolve a solution program with 99% probability. This 

measurement reflects the difficulty of evolving a solution program given an input 

program and a set of parameters to the LGP system. The second measurement 

considers the length of the solution programs produced by the LGP system, given that 

sufficient resources have been devoted to the system to produce a solution. 

 

To investigate the ability of LGP to optimise existing programs, an additional 

‘refinement’ stage is defined. The refinement stage uses the LGP system to evolve a 

solution program as before, with the change that some fraction of the random 

population of candidate programs is initialised as duplicates of the solution originally 

found. The refinement stage is terminated upon reaching a set limit of new candidate 

program creations, and the best candidate produced so far is returned. 

 

The refinement stage is performed after a program has been returned by the 

‘standard’ or ‘incremental’ evolution models. A non-evolutionary third method of 

code generation using a tree-walking algorithm is also considered. This algorithm 

does not perform any optimisations, which can cause it to produce sub-optimal code. 
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The resulting program length distributions are compared against each other, and with 

an ‘optimal’ solution produced by a human programmer. 

 

As part of this project, software has been produced allowing experiments to be 

conducted investigating the use of LGP as a means of solution program induction, 

and as a means of improving already identified solution programs. A guide to the 

operation of this software is provided as an appendix. 

 

Upon analysis of the results, the experiments have demonstrated that LGP is capable 

of automatically performing the task of code generation for the ten input programs 

when given sufficient time to do so. The LGP system has demonstrated the ability to 

automatically use the instruction set available to it in a productive manner without 

any additional information on which instructions from the set are a suitable 

translation of the given input parse tree nodes. Therefore, I believe that the LGP will 

be capable of automatically assimilating any additional instructions inserted into the 

instruction set and applying these in low level candidate programs where they are 

most productive. 

 

This report concludes with the observation that Linear Genetic Programming alone is 

not suitable for the task of code generation for the ten input programs considered. An 

examination of the computational effort metric shows that the ‘standard’ model is 

highly unsuitable due to scaling exponentially with increasing calculation 

complexity, whereas the ‘incremental’ method scales only linearly. The use of 

evolutionary methods such as LGP is discouraged due to their stochastic nature; they 

are not guaranteed to be productive. In the models considered here, the LGP system 

terminates as soon as an acceptable program is found, which results in programs 

containing considerable amounts of non-productive code. 

 

The technique of using LGP as a method for optimising existing programs appears to 

be more promising. The refinement stage is able to manipulate programs produced by 

the ‘standard’, ‘incremental’ or tree-walking algorithm into improved programs of the 

same quality as a human produced ‘optimal’ solution. Combining the algorithmic 

code generation method with the evolutionary refinement stage results in a fast, 

reliable method of generating code of a quality comparable to a human programmer. 

  

In the final section, we identify some of the limitations of the work due to the choice 

of LGP system parameters, and discuss some further possibilities for research. 
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2 Study of Problem 
This dissertation studies the process of code generation within a software compiler, 

and investigates means by which it can be performed or accelerated through the 

application of Linear Genetic Programming (LGP) techniques. This section discusses 

how code generation is performed in a traditional compiler and introduces the 

concepts that will be used to define the scope of the project and the nature of the 

experiments performed in section 4. 

 

2.1 What is Code Generation? 

Code generation is the process by which a compiler transforms an input program in 

the form of an intermediate representation (IR) into a linear form suitable for 

execution by some target machine (Louden, 1997). The code generator may output 

machine code directly, or output some form of assembly language to be converted 

into machine code by a separate assembly stage. The objective is to produce the most 

optimal output program given the properties of the target machine while ensuring that 

all the relevant semantics as defined by the IR are expressed. 

 

The target machine considered in this dissertation is a register machine modelled 

after a simplified model of a modern Von Neumann processor. The machine is 

capable of executing strings of instructions supplied to it in a simple assembly-like 

low level language (in this manner, it is an interpreter). The machine contains two 

memory areas for storage of value: a register file consisting of a finite number of 

storage locations, addressed through a non-negative integer index, where the values 

of intermediate calculations may be stored; and a memory area, addressed by the 

plain-text name of a variable from the symbol table, for the storage of the values of 

variables. The instructions are executed in a linear sequence starting from line 1 until 

the input instruction string is exhausted or a RETURN instruction is reached. It is 

assumed that all instructions take the same length of time to executed and no 

pipelining is implemented: the sole measure of the optimality of a program is its 

length in instructions. 

 

In this dissertation, an IR is considered to consist of two parts, the parse tree (or 

abstract syntax tree) and the symbol table. 

 

The parse tree is a machine manipulable representation of the input program in terms 

of the high level language features used in the original input source code file. The 

parse tree will have been generated from a plain text input source code file by the 

parsing and lexical analysis stage. A visualisation of a possible parse tree is shown 

below, together with the high level language program it encapsulates: 
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c = a + b; 

d = c / 2; 

 

Figure 2.1: Visualisation of possible parse tree part of an input IR together with high level 

source code 

 

The interior nodes of the graph denote language constructs such as sequencing 

(represented here by a semicolon character), assignments, branches and loops; and 

arithmetic operators such as addition, subtraction, division and multiplication. The 

leaf nodes of the graph denote variables (represented here by a node showing the 

symbolic name of the variable) or constants (represented here by a node showing the 

value of the constant).  

 

This tree has the effect of first calculating the value of the expression (a+b) and 

assigning this value to the variable c, and then calculating the value of the expression 

(c/2) and assigning this value to the variable d. 

 

The program expressed by this parse tree can be executed in a top-down manner. Any 

node can be invoked to return the numeric value of the sub tree in the current state at 

the time of invocation. To execute the program, the value of the root node is 

requested in the context of some given input system state. A system state in this 

context refers to the values of all symbolic variables. This system state is global and 

shared throughout execution of the tree. As such, the state may be altered during 

execution (for example, as a result of the assignment operation), and this altered state 

subsequently inspected. For sequencing nodes, the left hand side child is evaluated 

first, followed by the right hand side child and the value of this child returned. 

 

The second part of the IR is the symbol table. The symbol table contains the 

information about the variables referred to in the input program. This includes the 

symbolic name of the variable, the constant nature of the variable and the scoping of 

the variable in the context of the program. The parse tree may represent an isolated 

subroutine apart from calling program; certain variables may exist only within the 

scope of the subroutine. Together, the parse tree and the symbol table hold the full 

semantics of the input program. 
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The code generation phase includes the following tasks: 

 

• Instruction selection – The compiler selects which instructions from the 

instruction set of the target architecture to use to construct the output program. 

It is important to select instructions that perform the required tasks as implied 

by the IR. 

• Instruction scheduling – The compiler selects the most optimal ordering for 

the instructions it has selected. This stage can be critical in processors which 

implement pipelining, as correct instruction scheduling may allow multiple 

functions be undertaken simultaneously (such as memory access, instruction 

decoding and instruction execution). 

• Register allocation – The compiler allocates register locations for the results 

of intermediate calculations and variable values. Effective use of registers 

reduces the need to access memory locations to store or read values, resulting 

in decreased execution time. 

 

Together, the function of these tasks is to provide a translation from the high level 

parse tree program form into a low level machine executable language form. 

  

2.2 Example of Code Generation 

One possible output program produced by the code generation phase of a compiler is 

shown below, together with the input IR used to create it. The output program is 

shown in a simple assembler-like low level language. 

 

Symbol Table: 

 

Symbolic variable name Data type Scope Value of constant 

a Signed Integer Global – exists outside of 

subroutine 

N/A 

b Signed Integer Global – exists outside of 

subroutine 

N/A 

c Signed Integer Local - not accessible 

outside subroutine 

N/A 

d Signed Integer Global – exists outside of 

subroutine 

N/A 

2 Signed Integer Global – exists outside of 

subroutine 

2 

 

Table 2.2: Symbol table component of example IR 
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Parse Tree: 

 
 

c = a + b; 

d = c / 2; 

 

Figure 2.3: Parse tree component of example IR 

 

Output program: 

1: LOADS 0,   a   // load the value of variable a into register 0  

2: LOADS 1,   b   // load the value of variable b into register 1  

3: ADD   0, 0, 1  // add the values of registers 0 and 1 and store the result in register 0 

4: STORS 0,   c  // store the value of register 0 into variable c 

5: LOADS 0,   c  // load the value of variable c into register 0 

6: LOADV 1,   2   // load the direct value 1 into register 2 

7: DIV   0, 0, 1  // divide the value of r0 by the value of r1 and store the result in r0 

8: STORS 0,   d   // store the value of register 0 into variable d 

9: RETURN         // end procedure 

 

Listing 2.4: Low level program output of code generation phase of compiler for example IR 

produced by an algorithm 

 

Integer division in this case will round toward negative infinity. 

 

We consider a low level program to be syntactically correct with respect to an IR if 

and only if, after execution, for all possible values of all input variables, the values of 

all variables that exist outside the scope of the subroutine have the same value they 

have after execution of the program in its high level form. To show this briefly, some 

possible values of the input variables together with the expected output value 

(calculated by interpretation of the parse tree) are shown in the table below: 
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 Values of variables before execution 

of high level program 

Values of variables after execution of 

high level program 

 a b c d 2 a b c d 2 

Input case 1: 4 8 1 11 2 4 8 12 6 2 

Input case 2: 8 2 6 20 2 8 2 10 5 2 

Input case 3: 5 15 2 4 2 5 15 20 10 2 

Input case 4: -1 3 -5 0 2 -1 3 2 1 2 

 

Table 2.5: List of possible input and output values after execution of a model parse tree for 

various input cases 

 

If the system state is initialised with the values from the row labelled ‘Input case 1’, 

we can trace the execution of the low level program to determine if it has the same 

semantics as the IR. Where the value of register or variable in memory has changed, 

this is shown in boldface. 

 

Value of machine register or variable in memory after execution of 

instruction in left column 

Machine Register Variable in memory 

 

0 1 a b c d 2 

Initialisation garbage garbage 4 8 1 11 2 

1: LOADS 0,   a    4 garbage 4 8 1 11 2 

2: LOADS 1,   b    4 8 4 8 1 11 2 

3: ADD   0, 0, 1   12 8 4 8 1 11 2 

4: STORS 0,   c  12 8 4 8 12 11 2 

5: LOADS 0,   c  12 8 4 8 12 11 2 

6: LOADV 1,   2    12 2 4 8 12 11 2 

7: DIV   0, 0, 1   6 2 4 8 12 11 2 

8: STORS 0,   d    6 2 4 8 12 6 2 

9: RETURN          6 2 4 8 12 6 2 

 

Table 2.6: Values of machine registers and variables in memory during execution of a low 

level program 

 

This low level program has shown the same semantics as defined by the IR for this 

input case. The values stored in variables a and b are recalled in lines 1 and 2, and the 

addition is performed in line 3. This value is then stored in the variable c in line 4. 

Lines 5 and 6 recall the values of variables 2 and the constant 2, and the division is 

performed in line 7. The result of this calculation is then stored in line 8. The 

RETURN statement on line 9 ends the subroutine. After termination of execution, the 

values of variables a, b, c and d are as expected. Analyses for the other input cases 

will show the same result. 

 

This output program was produced by an algorithmic approach; each calculation and 

variable access was performed explicitly as it appeared in the parse tree. This output 
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program is not optimal for this input IR, however. Line 5 may be removed as it 

reinserts the value stored in the variable c into the register 0, which is a redundant 

operation. The symbol table contains additional information which may be used to 

further optimise the program. The variable c does not exist outside of this isolated 

subroutine; it may have been included by the human programmer to ease 

comprehension or maintenance of the program during editing. In this case, it can be 

seen that this program requires only that the values of variables a, b and d have the 

correct value upon program termination. If this addition information is considered, 

line 4 may be omitted as there is no requirement that the value of variable c be 

calculated and stored. With these two lines omitted, the program becomes:  

 

1: LOADS 0,   a   // load the value of variable a into register 0  

2: LOADS 1,   b   // load the value of variable b into register 1  

3: ADD   0, 0, 1  // add the values of registers 0 and 1 and store the result in register 0 

4: LOADV 1,   2   // load the direct value 1 into register 2 

5: DIV   0, 0, 1  // divide the value of r0 by the value of r1 and store the result in r0 

6: STORS 0,   d   // store the value of register 0 into variable d 

7: RETURN         // end procedure 

 

Listing 2.7: Optimised low level program listing produced by optimisation of code produced 

by an algorithm 

 

This optimised output program contains no references to the variable c, but exhibits 

the same semantics with respect to the complete IR. 

 

Optimising compilers contain code generators that are capable of performing many 

optimisations automatically. Instead of explicitly recalculating or recalling a value 

from memory each time it is needed, a code generator may place frequently used 

values in registers for fast reuse. ‘Peephole optimisation’ is a technique where a small 

section of produced output code is considered in isolation, similar to the inspection 

described above, and analysed to determine if its content may be manipulated or 

removed to increase its quality. In pipelined processors, instructions are scheduled to 

maximise usage of the stages of the processing pipeline. Processors with complex 

instruction sets provide many different approaches to performing the same task; it is 

the responsibility of the code generator to select the most appropriate series of 

instructions with respect to the requirements of the programmer, such as faster 

execution or reduced code size. 

 

In all of these cases, the optimisation capability must be explicitly programmed into 

the code generation software by the author. The programmer must supply a series of 

rules or patterns describing when it is appropriate to use each instruction or attempt a 

particular optimisation. As a result, the implementation of an optimising compiler can 

become highly complicated and error prone. 
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In this dissertation, a method is presented whereby LGP may be used as part of an 

extensible code generation facility capable of automatically performing code 

generation using only a description of the semantics of the available instruction set, 

and performing many of these optimisations implicitly due to the effect of fitness 

pressure. 
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3 Background 
Since the origin of machine learning research in the 1950s, the automatic induction of 

computer programs is a task that has been the subject of considerable research. This 

section provides a brief description of some of the approaches that have been 

developed to attempt the automatic induction of computer programs.  The section 

concludes with a discussion of the reasons why the Linear Genetic Programming 

evolutionary model has been considered as a suitable algorithm for use in performing 

code generation. 

 

3.1 Machine Learning as Induction of Computer Programs 

The goal of the field of research known as ‘machine learning’ is to develop computer 

programs capable of automatically and autonomously solving problems. As 

computers primarily work within the domain of computer programs and information 

stored within memory, research has focused on methods for granting programs the 

ability to work within these domains to search for solutions. The task of 

automatically producing a computer program exhibiting some kind of complex 

behaviour based on a high-level statement of the problem is known as ‘program 

induction’. 

 

In 1958 Friedberg (Friedberg, 1958) (Friedberg et. al., 1959), developed a computer 

program model in which a software agent is required to modify its own behaviour to 

emulate the behaviour of another; that is, to produce a computer program through 

induction. In this model, a ‘learner’ agent is tasked with emulating a behaviour, in the 

form of a computer program copying the state of bits within a memory, defined by a 

‘teacher’ agent. The two agents are not able to communicate directly except for the 

following: for each cycle, the ‘learner’ agent pseudo-randomly develops and executes 

a candidate solution program against an initial memory state supplied by the teacher 

agent. The teacher agent then examines the resulting memory state produced by the 

learner and returns a ‘success’ or ‘failure’ result indicating whether or not the desired 

behaviour was exhibited. In response, the learner agent pseudo-randomly alters its 

behaviour program and re-submits this to the teacher. Friedberg demonstrated that, 

over time, the learner would become able to exhibit the behaviour defined by the 

teacher’s result function. 

 

As part of this research, Friedberg gave the following observation detailing the 

rationale behind pursing the automatic induction of computer programs, and the 

insight into how such methods may be realised: 

 

Although modern electronic computers have relieved us of many 

tedious calculations, we are still faced with difficult tasks in which the 

slowness of our thoughts and the shortness of our memory limit us 

severely, but for which present machines are less adequate than we 

because they lack judgment. If we are ever to make a machine that 



 15

will speak, understand or translate human languages, solve 

mathematical problems with imagination, practice a profession or 

direct an organization, either we must reduce the activities to a science 

so exact that we can tell a machine precisely how to go about doing 

them or we must develop a machine that can do things without being 

told precisely how. 

 

If a machine is not told how to do something, at least some indication 

must be given of what it is to do; otherwise we could not direct its 

efforts toward a particular problem. It is difficult to see a way of 

telling it what without telling it how, except by allowing it to try out 

procedures at random or according to some unintelligent system and 

informing it constantly whether or not it is doing what we wish. The 

machine might be designed to gravitate toward those procedures 

which most often elicit from us a favourable response. We could teach 

this machine to perform a task even thought we could not describe a 

precise method for performing it, provided only that we understood 

the task well enough to be able to ascertain whether or not it had been 

done successfully. 

 

Investigation of the reduction of activities ‘to a science so exact that we can tell a 

machine precisely how to go about doing them’ would lead to knowledge-based 

systems such as expert systems (Giarratino et. al., 1998), and other knowledge-based 

AI reasoning techniques.  

 

Counter to knowledge-based systems, there are several classes of techniques which 

consider the case of developing ‘a machine that can do things without being told 

precisely how’. The class of techniques considered in this dissertation is known as 

‘evolutionary algorithms’, or ‘evolutionary computation’. 

 

3.2 Evolutionary Computation 

Evolutionary computation (EC) techniques are a class of techniques that can be 

considered to be the result of interpreting Friedberg’s analysis of a ‘machine that can 

do things without being told precisely how’. EC techniques can be used in many 

applications. They can be used to search for the most optimal values for a set of 

variables, to create classifier systems, or to create computer programs through 

induction. We consider the ‘genetic’ sub-class of EC techniques, which includes 

Genetic Algorithms (GA), Genetic Programming (GP) and Linear Genetic 

Programming (LGP). 

 

Genetic EC techniques attempt to solve problems through use of a model of evolution 

through natural selection. In this model of natural selection, a population of candidate 

solution individuals is maintained. Each ‘generation’, candidate solutions from the 
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population are selected for reproduction based on their ‘fitness’, that is, their 

suitability to the target task. This is the selection phase. Randomly selected sections 

of these highly fit candidate solutions are combined or slightly modified to produce 

the next generation of candidate solutions. This is the recombination phase; such 

operations are referred to as recombination operations. Candidate solutions with poor 

fitness are removed from the population. This process continues until a ‘success 

criterion’ is met, such as the creation of a sufficiently fit program; or until a 

‘termination criterion’ is met, such as the generation of some large number of 

candidate solutions without successfully evolving an acceptable solution. 

 

In algorithms such as this, the selection of generally highly fit candidate solutions for 

recombination operations acts as a form of pressure on the population, causing it to 

tend towards candidate solutions of higher quality. The recombination operators act 

on these fit candidate solutions to create diversity in the population while attempting 

to maintain qualities which lead to good fitness scores. Genetic evolutionary 

computation algorithms require the definition of a problem-specific ‘fitness function’ 

mapping candidate solutions to fitness values. The objective of the fitness function is 

to provide a graduated mapping from candidate solutions to fitness values allowing 

the evolutionary system to distinguish between candidate solutions by how ‘close’ 

they are to the ideal solution. As EC techniques attempt to improve upon the random 

programs produced during the initialisation stage using semi-guided search, they can 

be considered to be class of metaheuristic optimisation algorithms. 

 

In defining the representation for the structures undergoing adaptation and the 

primitives from which these structures will be composed, EC techniques impose two 

requirements: ‘sufficiency’ and ‘closure’. 

 

A definition of a candidate solution structure is said to be sufficient if there exists the 

capability for the expression of an acceptable candidate solution. For example, if the 

objective is to induce a computer program capable of performing addition, then 

instances of candidate solution structures must be capable of somehow performing 

this function, either directly or indirectly. Without this, the evolutionary system will 

continuously generate candidate solutions that perform operations that are similar to 

the desired operation, but never an acceptable solution. 

 

As the recombination operations of EC attempt to produce solutions through repeated 

manipulation of candidate solutions, it is capable of exploring any possible candidate 

solution. If the candidate solutions represent computer programs, it is possible that 

the programs produced by EC contain incomplete or otherwise invalid structures. As 

a result, the user must account for all possible kinds of irregularity when evaluating 

the candidate solutions; this is the ‘closure’ requirement. Alternatively, the user may 

choose to impose restrictions on the structure of the random candidate solutions 

produced during the initialisation stage, and ensure that the recombination operations 

never produce an ‘invalid’ individual. For example, if the candidate solutions 
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represent instructions in an assembly-like language, the recombination operations 

may produce an illegal instruction such as an attempt to access a register outside the 

valid range. The user may instruct the interpreter to use some form of wrap-around to 

transform the illegal instruction into a legal instruction, instruct the interpreter to 

ignore illegal instructions, or take other measures to prevent such an instruction from 

being randomly generated or otherwise produced as a result of crossover or mutation. 

 

The structure of the candidate solution individuals, the approaches used to combine 

and modify these individuals, the nature of the fitness function, and the success and 

termination criteria all differ according to the specific genetic technique used. The 

earliest, well studied of the genetic methods is the Genetic Algorithm. 

 

3.3  Genetic Algorithm 

The Genetic Algorithm (GA) methodology is founded upon an analysis performed by 

Holland in Adaptation in Natural and Artificial Systems (Holland, 1992). In this 

analysis, Holland considers the task of calculating an optimal set of values for one or 

more variables of known type. The values of the set of variables are encoded as a 

single string of binary digits. To search the space of possible combinations of binary 

digits (and therefore search the set of possible variables), a model of evolution 

through natural selection is used. 

 

The algorithm begins by randomly generating a population of competing random 

candidate solution strings. The fitness of each of these candidate solutions is then 

calculated using the fitness function. There are two methods used to generate the next 

generation of candidate solutions: ‘crossover’ and ‘mutation’. These methods are 

selected at random (with user-specified rate) during the reproduction phase of the 

GA. 

 

In ‘crossover’, the genetic material of two parent individuals is combined to produce 

a child individual containing some genetic material from each of the parents. A 

crossover point is selected within the encoding of the binary string, and the binary 

values to the left of this point from the first parent and the binary values to the right 

of this point from the second parent are combined to produce the child program. The 

length of the resulting child program is the same as that of each of the parents. This 

method acts as an analogue to the exchange of chromosomal material in sexual 

reproduction in nature, giving the ‘Genetic Algorithm’ its name. 

 

In ‘mutation’, a random bit or series of bits within the string encoding is selected and 

these positions within a selected parent individual are toggled, producing a child 

program that is a slightly modified copy of the parent program. 

 

New generations of candidate solutions are generated successively until a candidate 

solution of sufficient fitness is generated, or some other termination criterion is met, 
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such as a maximum number of generations. In such cases, a copy of the best-of-run 

candidate solution (the candidate solution with the best fitness found at any point 

during the execution of the algorithm) will be returned. 

 

There are two broad models for managing the individuals in the population during the 

reproduction stage: ‘generational’ and ‘steady state’. In the generational model, the 

entire population is replaced with an equal number of child programs simultaneously. 

In the steady state model, programs with low fitness in the population are replaced by 

new child programs in a continuous fashion. For GA, the steady state model is often 

used. 

 

As an example, we will consider the use of GA in attempting to solve a symbolic 

regression problem. In this problem, we have access to a set of empirically obtained 

data points in two dimensions, and suspect that a quadratic relationship exists 

mapping the value of one variable to that of the other. That is, for x within the 

interval –5 to +5, we suspect there exists the relationship y = A x
2
 + B x + C, where 

A, B and C are constants to be found (in this case, we will assume that they are 

signed integers). 

 

x y 

-5 6 

-4 0 

-3 -4 

-2 -6 

-1 -6 

0 -4 

1 0 

2 6 

3 14 

4 24 

5 36 

 

Table 3.1: Empirically obtained data points for symbolic regression example 

 

To use GA to solve this problem, we need to specify the nature of the candidate 

solutions (the nature of what exactly we wish to find as a result of running the 

algorithm), how a candidate solution will be encoded as a binary string, how the 

recombination operations will proceed, the fitness function, and the success and 

termination criteria. Additional parameters to the evolutionary system, such as 

population size and rates of the recombination operations are often given as a tableau 

of parameters. (Not shown here) 

 

In this example, for simplicity, we will attempt to find the optimal value of three 

signed integer constants in order to construct a function modelling the data in the 

table above. Our candidate solutions will consist of an encoding of three signed 
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integer values. We will use 4-bit, two’s complement encoding to transform each 

candidate solution 3-tuple of signed integers into a 12-bit binary string. 

 

A = 4,            B = 1,            C = 3 

 

0 1 0 0 0 0 0 1 0 0 1 1 

  

A = -1,         B = 5,          C = 7 

 

1 1 1 1 0 1 0 1 0 1 1 1 
 

Figure 3.2: Example representations of two candidate solutions as 12-bit binary strings 

 

Using this representation, the values of A, B and C may range from –8 to 7, giving 

2
12

 possible solutions. This choice of encoding implies a number of assumptions 

regarding the data set and the nature of the solution. We are assuming that there 

exists a quadratic relationship between the two variables, and that the constants A, B 

and C are integers. If any of these assumptions are false, our attempt to use the GA 

system to evolve a solution will fail in some capacity. It may or may not be able to 

produce an approximated solution in which our assumptions do hold. For example, if 

the ideal solution is quartic, then the returned solution may be a very coarse quadratic 

model of the data, or if the ideal quadratic solution does not have integer coefficients, 

the GA system may return a solution with integer coefficients which is close to the 

ideal solution. 

 

The recombination operations of crossover and mutation will act as described 

previously. The mutation operator may only alter one bit at a time. 

 

In symbolic regression applications of GA, fitness is commonly calculated by means 

of fitness cases. Each fitness case considers one point from the input data set. The 

fitness contribution for each fitness case is the absolute error between the value of y 

calculated by the candidate solution and the value of y from the data set. All the 

fitness contributions are summed to produce the fitness value for the candidate 

solution. For this function, lower fitness indicates a candidate solution of higher 

quality. If the fitness contribution for a fitness case is less than 3 (an arbitrary and 

user-defined value), this is recorded as a ‘hit’. The success criterion for this problem 

is met when the number of ‘hits’ is equal to the number of data points (11). 

 

The following two candidate solutions have been produced as a result of random 

initialisation of the population.  

 

Candidate solution 1: 
 

A = 1,            B = 1,            C = -3 
 

0 0 0 1 0 0 0 1 1 1 0 1 

  

Candidate solution 2: 
 

A = 2,         B = 3,          C = -4 
 

0 0 1 0 0 0 1 1 1 1 0 0 
 

Figure 3.3: Example representations of two candidate solutions as 12-bit binary strings 
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The following table gives the values of f(x) for these two candidate solutions. 

 

 Value of y Error (fitness contribution) 

Value of x Data set Candidate 

solution 1: 

Candidate 

solution 2: 

Candidate 

solution 1: 

Candidate 

solution 2: 

-5 6 17 31 11 25 

-4 0 9 16 9 16 

-3 -4 3 5 7 9 

-2 -6 -1 -2 5 4 

-1 -6 -3 -5 3 1 

0 -4 -3 -4 1 0 

1 0 -1 1 1 1 

2 6 3 10 3 4 

3 14 9 23 5 9 

4 24 17 40 7 16 

5 36 27 61 9 25 

 

Table 3.4: Values produced from candidate solutions 1 and 2 for each fitness case along side 

the fitness contribution value 

 

Candidate solution 1 has fitness value 61 and 4 hits; candidate solution 2 has fitness 

value 110 and 3 hits. To put these values in context, the following table shows the 

fitness values for some other candidate solutions: 

 

Candidate solution Fitness value Hits 

(A =  1, B =  1, C = -3) 61 4 

(A =  2, B =  3, C = -5) 110 3 

(A =  2, B =  1, C =  3) 187 0 

(A =  6, B =  1, C =  6) 660 0 

(A = -2, B =  1, C = -1) 307 2 

(A = -8, B =  0, C =  6) 908 1 

(A =  3, B = -8, C = -4) 330 1 
(A =  2, B =  7, C = -3) 135 4 
(A =  1, B =  6, C =  5) 117 1 

 

Table 3.5: Fitness values for various candidate solutions to the symbolic regression example 

problem 

 

Typically, most randomly generated candidate solutions to a problem will have very 

large (poor) fitness values. Of course, it is possible, though unlikely, that the exact 

solution may be found as a result of the random initialisation of the population. 

 

The following graph shows the values from the data set (shown as points), and the 

curves defined by candidate solutions 1 (as the dashed line) and 2 (as the solid line). 
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Figure 3.6: Plot of empirically obtained data set [points] together with two candidate 

solutions (A=1, B=1, C=-3) [dashed], and (A=2, B=3, C=-4) [solid] 

 

From this graph, it can be seen that both candidate solutions 1 and 2 produce a very 

coarse model of the data set. The figure below shows how candidate solutions 1 and 2 

can be used as parent individuals by the crossover recombination operation to 

produce a third child program. 

 

Candidate solution 1:             

(A=1, B=1, C=-3) 0 0 0 1 0 0 0 1 1 1 0 1 

             

Candidate solution 2:             

(A=2, B=3 and C=-4) 0 0 1 0 0 0 1 1 1 1 0 0 

             

Child candidate solution:             

(A=1, B=3, C=-4) 0 0 0 1 0 0 1 1 1 1 0 0 

             

 

Figure 3.7: Crossover between two candidate solution programs within GA producing a 

third child program 

 

The first five binary cells from candidate solution 1 and the last seven binary cells 

from candidate solution 2 have been combined to produce a child candidate solution 

containing genetic material from both parents. The user may opt to also retain the 

child produced as a complement to the above operation (i.e., A=2, B=1, C=-3), but 

this is not shown here. The following table shows the values produced by the child 

candidate solution for all fitness cases: 
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x y x
2
 + 3x - 4 Error 

-5 6 6 0 

-4 0 0 0 

-3 -4 -4 0 

-2 -6 -6 0 

-1 -6 -6 0 

0 -4 -4 0 

1 0 0 0 

2 6 6 0 

3 14 14 0 

4 24 24 0 

5 36 36 0 

 

Table 3.8: Values of x and y from the input data set compared with the values produced by 

child candidate solution program 

 

This child program scores 11 hits and is a perfect solution to the symbolic regression 

problem. 

 

This example presents only 2
12

 possible solutions, and therefore may easily be 

examined through exhaustion of all possible solutions. However, a more realistic 

example may consider a dozen or more variables of 32-bit integer type. For such a 

program, the number of possible solutions rises to 2
32n

, where n is the number of 32-

bit integer variables. For large n, this becomes impossible to solve by exhaustion. 

 

Holland contends that instances of binary strings encode information regarding the 

fitness contributions of a large number of hyperplanes within the search space, 

collectively referred to as schemata. The production of new individuals by 

combination of genetic material implicitly calculates a great deal of information of 

information about the search space. The reproduction stage of the evolutionary model 

will tend to favour those individuals with good fitness, causing successive 

generations to have a greater concentration of any given productive schema. When a 

large number of individuals possess the same productive schema, the probability that 

the crossover operation will be able to produce programs that do not possess this 

schema is reduced. As a result, the search is implicitly directed toward locating 

productive values for those parts of the binary string not already determined to be a 

likely component of the optimal solution. Note that this does not exclude the 

algorithm from escaping a local minimum by mutating part of a candidate solution. 

 

Software employing systems based on the GA model are capable of solving a large 

number of diverse problems such as robotics, automotive design, engineering, 

routing, studies of encryption and financial analysis. GA has the desirable property 
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that it has a constant and small memory resource requirement, due to only requiring 

the storage of a constant number of binary strings of constant length. 

 

To use GA as a method for the induction of computer programs, the user must define 

and encoding from the space of computer programs to the space of constant length 

binary strings, and define a fitness function mapping candidate solutions to fitness 

values. 

 

For example, an instruction in a simple imperative assembly-like language may 

consist of two parts: an operation part and an operand part. If the instruction set of 

this language has four instructions, the operation part of the instruction may be 

encoded as a two bit binary string. Assuming that the operand part of the instruction 

can be encoded in four bits, each complete instruction can be encoded as a six bit 

binary string. Therefore, a candidate solution program in binary string form will 

consist of a multiple of six binary values. Using this encoding, the crossover operator 

will exchange series of instructions and operands between individuals to produce new 

candidate solution programs. If the crossover operation is not constrained to only 

exchange material either side of a boundary between instructions, the crossover point 

may be placed between instructions, causing operations and operands to be generated 

in the child individual that did not appear in either of the parents. This effect is 

usually unpredictable and hinders the evolutionary process.  

 

As GA manipulates binary strings of a constant length, for the symbolic regression 

example discussed previously, the user would need to specify a different 

representation if they were to attempt cubic or quartic regression instead of quadratic. 

In the case of automatic induction of computer programs, this places a constraint on 

the maximum length of the candidate solution programs that will be considered. 

(Programs with fewer than the maximum number of permitted instructions can be 

encoded through the use of ‘no-operation’ instructions which are skipped) 

 

Genetic methods such as GA have been used previously indirectly in the optimisation 

of code in code generation. (Cooper et. al., 1999) examines the task of selecting the 

most optimal ordering of a number of possible algorithmic applications which may be 

attempted during the code generation phase of compilation. The GA is used to select 

the most optimal ordering of optimisations. 

 

In (Beaty et. al, 1996), performed an analysis of the use of GA to optimise the 

scheduling of machine code instructions in an attempt to exploit instruction-level 

parallelism – the parallelism exposed by a processor implementing pipelining. GA 

was used as a means of determining the optimal weight values for the configuration 

of a non-evolutionary scheduling algorithm. 

 

Lorenz and Marwedel (Lorenz et al., 2004) used GA as a method for performing code 

generation for a number of specialised DSP architectures in the context of an audio 
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decoding and processing problem. The objective of this research is to produce a data 

flow graph from which linear assembly code can then be produced. The data flow 

graph must perform some required calculation, while complying with a number of 

constraints imposed by the target architectures. Their approach applies GA in several 

coupled stages of the compilation pipeline to form several stages of optimisation. 

 

3.4 Genetic Programming 

Genetic Programming (GP) is an adaptation of genetic techniques to work on more 

complex structures than the binary strings considered by GA. In GP, the structures 

undergoing adaptation are hierarchical trees composed of functions and terminals 

appropriate to the problem domain. Functions are interior tree nodes whose 

evaluation will depend in some way on their child nodes. This includes arithmetic 

operations, Boolean operations and control structures. Terminals are leaf nodes. This 

includes variables, sensor inputs and functions with no arguments which have side 

effects. GP was analysed in depth by Koza in Genetic Programming (Koza, 1992). 

 

The use of a hierarchy of nodes makes GP more amenable to use in the induction of 

computer programs than GA. The structure of a GP program tree is very similar to a 

parse tree produced by the front end of a compiler, or a LISP S-Expression. In fact, 

many of the original experiments in GP were conducted using the LISP language, 

with the candidate solution structures stored directly as LISP S-Expressions within 

the LISP environment. The use of LISP structures is no longer prevalent in GP 

research due to the overheads involved in interpreting LISP code. 

 

The primary difference between GA and GP is that there is very little predefined 

structure to the candidate solutions considered by GP. GP was designed deliberately 

so that the size and structure of the solution would be part of the solution, rather than 

something determined in advance by the user. In GP, the recombination operations 

(described in full later) are able to manipulate the size and structure of the candidates. 

As a result, genetic methods with fixed-length candidate solutions are usually 

considered to be derivatives of the GA approach, whereas genetic methods with the 

capability of manipulating the length of candidate solutions are considered to be 

derivates of the GP approach; this includes Linear Genetic Programming (LGP). 

 

 
 

Figure 3.9: Possible candidate solution program tree individual in Genetic Programming 
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The above figure shows a possible candidate solution program tree that may be 

produced as a result of GP. The program is evaluated by evaluating the root node. 

This evaluation propagates down the tree to the leaf nodes. Conversely, the tree can 

be considered to have values which propagate up through the tree toward the root. 

This program calculates the value of (x+3)*(x+1) and returns the result. 

 

Random initialisation in GP differs from that of GA as there is no predefined 

container of information (such as a binary string) that must be filled to construct an 

individual. In GP, random individuals are generated to some kind of mode defined by 

the user, such as requiring all leaf nodes in the tree to be at a certain depth. A 

commonly used mode is ‘ramped half-and-half’ whereby half the individuals in the 

population are required to have all leaf nodes at a specific depth, and the other half 

may have leaf nodes at any depth. Within a population, this ramping of depth values 

is used to create variety. 

 

To manipulate the tree structures comprising a candidate individual, GP defines its 

own recombination operations of crossover and mutation. 

 

In GP, crossover acts upon subtrees within the parent individuals. The following 

figure shows an example: 

 

 
 

Figure 3.10: Subtree crossover in GP. The indicated subtree in Individual B is removed and 

replaced with the root node of Individual A to produce the New Individual 

 

In the above example, Individual A represents the expression (x+3)*(x+1), and 

Individual B represents the expression (x*2)+(3+(x*2)). The root node of Individual 

A, representing the expression (x+3)*(x+1), and the right child node of the root of 
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Individual B, representing the expression 3+(x*2), have been selected for crossover. 

The indicated subtree in Individual B is removed and replaced with a copy of the 

indicated subtree (i.e. the whole tree) from Individual A to produce the new 

individual. This new individual, representing the expression (x*2)+((x+3)*(x+1)), 

contains genetic material from both parent programs. In addition, it has a size and 

structure different to both parent individuals. 

 

The GP mutation operator may be defined to have any number of effects: it may 

replace the selected subtree with another subtree of arbitrary size and structure, it 

may replace the selected subtree with a terminal, or it may replace the node at the 

selection point with another node of the same type (an addition function node for a 

multiplication function node, or replace a variable terminal with a different variable 

terminal). 

 

In addition to these, there are many different recombination operations which may be 

used, such as the ‘hoist operation’ (Kinnear, 1994), which produces a new child 

program by promoting a randomly selected subtree of a parent program to root level, 

and the ‘shrink operation’ (Angeline, 1996), a specialised case of mutation where the 

randomly chosen subtree is replaced by a terminal chosen at random from the 

terminal set. 

 

Closure and sufficiency must be satisfied by a GP specification as before. For 

programs of the form described above, the function nodes must be able to gracefully 

accept any values produced by their child nodes. For example, the division operator 

may appear as a function node in a program, where it is defined to return the result of 

dividing the result of its left child by the result of its right child. This description of 

the semantics does not allow for the case where the result of the right child has the 

value zero. A human programmer may actively take steps to avoid such an 

eventuality, but the GP system is free to construct such a program as a result of 

random application of the recombination operators. To handle this case in GP, the 

semantics of the division operator are often augmented to return zero, one or the 

value of the left child in the case if the value of the right child is zero, and the normal 

value of division otherwise. The resulting operator is often referred to as the 

‘protected division’ operator. 

 

Alternatively, the Strongly Typed Genetic Programming STGP (Montana, 1995) may 

be considered. STGP introduces the concept of strict data typing into the tree 

genome. As is the case in many high level languages, in STGP, each terminal has an 

associated return type, and each function has a type for each of its arguments 

(children) and a return type. The process which generates the initial, random 

candidate solutions and the recombination operations are implemented so as to ensure 

they do not violate the constraints imposed by this type system. 
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The sufficiency condition is satisfied by ensuring that the set of functions and 

terminals available to the GP system is sufficient to express a solution program. For 

complex or novel problems, it can be difficult to determine this manually beforehand. 

The user can maximise the chance that the sufficiency condition is satisfied by 

saturating the function and terminal sets with a wide array of operations and 

variables. Due to the ability of GP to manipulate the size and shape of the candidate 

solutions, it implicitly has the ability to manipulate the concentration of instances of 

the functions and terminals available to it. As a result, the GP system will act to 

automatically remove those elements which do not contribute towards the creation of 

a useful solution, due to the poor fitness scores of those programs in which they 

appear. 

 

As the fitness values of the population improve, only those elements which actively 

contribute to a useful solution will be retained. For example, in the symbolic 

regression example considered in section 3.3, the function set may contain addition, 

multiplication, subtraction, protected division as well as trigonometric operations 

such as sine and cosine. As the curve can be sufficiently expressed with just 

multiplication and addition (though would not be known in advance), the GP system 

may tend to remove candidate programs which contain the trigonometric functions. 

Alternatively, as there is no restriction on the format of the solutions returned by GP, 

it may find a way to express the curve using the available functions in an unexpected 

manner. For example, it may be possible to construct an acceptable model of the data 

set within the interval –5 < x < 5 by a sine curve. 

 

Kinnear (Kinnear, 1993) has used GP to evolve a LISP program capable of 

performing sorting, requiring the definition of a novel fitness function. In Genetic 

Programming and Data Structures (Langdon, 1998), Langdon demonstrated that 

tree-based GP is capable of constructing and using several common aggregate data 

structures used in computer programs, such as the list and the stack, from typical 

programming primitives such as increment, load/store and conditional instructions. In 

the Genetic Programming series (Koza, 1992, 1994) (Koza et. al., 1999, 2003), Koza 

augments the basic GP approach with ‘automatically defined functions’, enhancing 

the ability of GP to evolve solutions to problems by granting it the ability to 

automatically and autonomously identify and reuse useful sections of code. Koza also 

demonstrates additional applications of GP including circuit design and invention. He 

does not attempt to provide formal proof of the ability of GP as a problem solving 

technique, but provides a large amount of promising experimental data. In this series, 

it is argued that GP techniques provide the means for human-competitive 

intelligence, due to the power of GP in program induction. 

 

Although GP is capable of inducing solutions to many problems in the form of 

programs, it is poorly suited for dealing with linear instruction strings. It is possible 

to constrain the various structure altering operations of GP to produce linear or line-

like structures, but these constraints reduce the effectiveness of the GP method. A 
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more suitable approach for the manipulation of linear structures such as strings of 

instructions in a low level language is Linear Genetic Programming (LGP). LGP is an 

approach which combines the ability of GP to automatically manipulate the size and 

shape of candidate solutions with the linear structure of GA. 

 

 

3.5 Linear Genetic Programming 

Linear Genetic Programming (LGP) is an approach which combines the ability of GP 

to automatically manipulate the size and shape of candidate solutions within the 

population with the linear structure and recombination operations of GA (Banzhaf et. 

al., 1998). 

 

In LGP, the candidate solution structures are linear strings of user-defined structures. 

Although LGP lacks the freely manipulable structure offered by GP, the linear nature 

of LGP structures offers a number of advantages. The linear structure of LGP 

programs allows it to be directly used in the production of programs written in 

assembly-like languages and machine code. 

 

The nature of LGP crossover depends heavily on the nature of the structures used. 

LGP may be used to manipulate strings of indivisible instructions, or to manipulate 

strings of digits which are then decoded in a similar method to GA. The interpretation 

of a free-form string of digits as a computer program is sometimes referred to as a 

‘codon’ approach. 

 

A typical LGP crossover considering strings of atomic instructions combines the 

contents of two parents in a manner similar to GA. A transition point is randomly 

placed at an instruction boundary within each of the parent individuals. Instructions 

are then copied from one parent up until its transition point, then copying resumes 

from the position of the transition point in the second parent, and vice versa. This is 

shown below: 

 

 

 

 

 Instruction String a Instruction String b 

     

 Instruction a1  Instruction b1  

 Instruction a2  Instruction b2  

 Instruction a3  Instruction b3  

 Instruction a4  Instruction b4  

 Instruction a5  Instruction b5  

 Instruction a6  Instruction b6  

 Instruction a7    
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 New Instruction String a New Instruction String b 

     

 Instruction a1  Instruction b1  

 Instruction b3  Instruction b2  

 Instruction b4  Instruction a2  

 Instruction b5  Instruction a3  

 Instruction b6  Instruction a4  

   Instruction a5  

   Instruction a6  

   Instruction a7  

     

     

 

Figure 3.11: LGP crossover between two strings of indivisible instructions 

 

This crossover is very simple to implement. If the instructions are of a uniform length 

in memory, the crossover can be implemented in a small number of fast memory 

block copy operations. Note that the two child instruction strings have a different 

length than either of the parent strings, unlike GA. 

 

For the codon approach, a similar method is used except digits or groups of digits are 

copied instead of instructions. To ensure closure, the interpreter transforming codons 

into program fragments must be able to interpret any incoming codon string; this may 

be achieved by silently ignoring unexpected codon groupings that may be produced 

as a result of the crossover or any remaining incomplete codons appearing at the end 

of a string. 

 

One of the earliest approaches to evolution of computer programs using a variable 

length linear genome is the JB language and system (Cramer, 1985). This method 

was formulated as a general approach for the evolution of programs. In this system, 

an instruction consists of a string of three consecutive digits. These digits are 

interpreted by the JB system in a manner similar to the decoding of a machine code 

instruction by processor; the first digit indicates the operation part of the instruction 

and the remaining two digits provide the arguments. This system uses a crossover 

operation capable of altering the length of the instruction string in a manner similar to 

the GP crossover. This approach was abandoned due to the high risk of the 

production of programs containing infinite loops. 

 

Similarly, Perkis (Perkis, 1994) investigated methods where a variable length genome 

consisting of LISP S-Expression structures may be used to develop programs 

‘designed’ around manipulating a stack of values. The use of S-Expressions in this 

work is typical of a GP system, yet the use of a two-point crossover operator is more 

similar to LGP. This work investigated a series of regression problems, and 

concluded allowing the developed programs use of a stack greatly increased the 

efficiency of the resulting programs when compared with tree based GP.  
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The GEMS system produced by Crepeau (Crepeau, 1995) is an extensive LGP-like 

system for the evolution of machine code for the Z80 processor. The GEMS system 

includes a reimplementation of the Z80 CPU in the form of an interpreter. This 

approach was used to evolve a program capable of writing a ‘hello world’ string to 

output ports on the processor. In this system, the LGP crossover acts only on the 

boundaries between instructions, enforcing the manipulation of complete instructions 

only. 

 

VRM-M (Huelsbergen, 1996) is a similar approach using formal methods. It uses a 

linear representation of programs using strings of indivisible instructions and a 

crossover operation working upon such strings. It has been used to develop a program 

performing multiplication through iterations. The system is capable of creating this 

non-liner program from a selection of low level instruction primitives such as 

branches and jumps, and is shown to perform significantly better than random search. 

 

The CGPS (later known as AIM-GP) approach developed by Nordin (Nordin, 1997) 

directly manipulates and executes machine code for the SPARC processor with no 

discrete interpretation or compilation stages; this approach is designed to proceed as 

efficiently as possible. As CGPS functions consist of machine code in memory, they 

may be invoked by a C function call by an appropriately typecast pointer. This is 

made possible by wrapping the evolved ‘body’ of a candidate solution program in a 

shell consisting of a boilerplate header and footer. The function of this header and 

footer is to ensure that the state of the stack and processor registers are in a consistent 

state to allow the body of the CGPS function to proceed and return successfully. The 

inclusion of these functions would be considered standard practice by a human 

programmer, but they must be added explicitly by the CGPS system to ensure the 

working of the system. 

 

The SPARC architecture is a RISC architecture; the subset of instructions considered 

by CGPS are all of a fixed, shared length, therefore the crossover operation is fast to 

execute. In addition to evolving single linear programs, the CGPS is able to 

automatically develop a small number of reusable subroutines in a manner similar to 

the automatically defined functions of GP. This is achieved by limiting the method by 

which subroutine calling instructions may be generated; the only subroutine 

invocation instructions that may appear in a candidate solution are those which are 

targeted at a valid subroutine at an address stored in a predefined SPARC-specific 

register dedicated to that purpose. Jumps to arbitrary memory locations are not 

allowed. It is possible for CGPS programs to contain control flow statements which 

jump to positions within the ‘body’ of an evolved program, and therefore the 

potential for infinite loops is present. Execution of CGPS programs is bounded by 

imposing a maximum limit on the number of executed instructions before execution 

is forcefully aborted by an external monitoring process. The fitness measure is 

application specific and based upon considering the results of program execution on 



 31

the environment. This approach is suitable for many applications, including image 

processing, sound processing, robot control and plant control.  

 

Kühling (Kühling, et. al. 2002) studied methods whereby Nordin’s LGP-based AIM-

GP method could be applied to CISC processors such as the Intel 386. This research 

attempted to use the LGP system to evolve a machine code program capable of 

performing a classification task. The focus of this research was to delegate the 

majority of the error-checking work to the physical CPU, reducing the need to 

dedicate processing time to the task of ensuring that the candidate programs were 

valid before execution. This research has been extended by performing hardware-tied 

LGP in parallel on GPU (Harding et. al., 2007) and embedded GPU (Wilson et. al., 

2010). 

 

(Orlov et. al., 2009) examined the use of LGP to evolve bytecode programs for the 

Java virtual machine. Direct measures were taken in the implementation of the 

recombination operators to ensure the consistency in the state of the stack. For 

example, a crossover operation may only replace a given code section with another 

code section of the same data type and with the same difference in stack frame depth. 

A thorough mathematical treatment of these conditions is given. 

 

Further adaptations of GA and GP are possible, such as Cartesian Genetic 

Programming (Wilson et. al., 2008), where the LGP system is augmented by 

considering a directed acyclic graph of structures, rather than a strict line of 

structures. 

 

The approach and fitness function described in this dissertation is primarily inspired 

by the approach taken by Jackson in Evolution of Processor Microcode (Jackson, 

2005). This paper considers the use of a LGP system to evolve the microcode 

implementation of several machine code instructions for a processor. Jackson 

introduces the concept of supplying a varied set of ‘hints’ to the LGP system to 

provide a graduated fitness function capable of guiding the genetic system to 

assemble complex microprograms with the required semantics. 

 

As far as I am aware, my dissertation is the first piece of research to consider the use 

of LGP towards performing the task of code generation in a compiler directly. That 

is, the use of LGP where the structures undergoing adaptation are a direct 

representation of the low level program output form, and the task to be performed is 

the evolution of a program with the same semantics as expressed by an IR, without 

manual reconfiguration of the fitness function between cases. 
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3.6 Applicability of Linear Genetic Programming 

It has been observed that evolutionary computation techniques are routinely 

successful where in situations where a number of properties are evident (Poli et. al, 

2008, page 111). The problem of code generation identified in this dissertation 

exhibits some of these traits: 

 

Finding the size and shape of the ultimate solution is a major part of the 

problem: In this problem, the length of the (optimal) solution program is not 

specified in advance. We do not want to restrict the space of programs available for 

consideration by the LGP system by imposing any restrictions on the size or structure 

of the solution program. 

 

Significant amounts of test data are available in computer readable form: In this 

problem, all input and output data is already in computer readable form. Additional 

fitness cases may be synthesized as required to increase the amount of input data 

available to the system. 

 

There are good simulators to test the performance of tentative solutions to a 

problem, but poor methods to directly obtain good solutions: To test the 

performance of a candidate solution program, it is necessary to either produce an 

interpreter within which the programs may be run, or develop some kind of 

specialised hardware for the task. In this problem, developing an interpreter for an 

assembly-like language is not a difficult task. If the target architecture were a real, 

physical processor, then the processor itself may be used to execute the programs 

directly, quickly and exactly. However, executing candidate programs in an 

interpreter allows their execution to be monitored carefully, an approach which is 

used in this dissertation to guide the evolution of solution programs. There already 

exist very good algorithmic solutions for the task of code generation. However, this 

project aims to determine whether LGP may be used to develop programs of a higher 

quality than a certain class of naïve algorithms. 

 

Small improvements in performance are routinely measured (or easily 

measurable) and highly prized: All factors affecting the suitability of a program, 

including program length, memory length and required processor time are all easily 

measurable. It is the intention that where a correct solution program of possibly poor 

quality may be produced initially, the LGP system may act to improve this program 

over time as a result of fitness pressure, i.e. the improvements in program quality, for 

measurements such as program length, are easily measurable and highly prized. 

 

The problem of code generation does not exhibit the remaining traits as identified by 

this work, but they are worthy of comment:  
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The interrelationships among the relevant variables is unknown or poorly 

understood (or where it is suspected that the current understanding may 

possibly be wrong): In this problem, the semantics of the input parse tree are 

specified exactly, and the full semantics of all available instructions in the instruction 

set are known. However, highly complex programs may exhibit certain emergent 

behaviours to which purely algorithmic methods may be blind without significant 

analysis. An example of this may be the appearance of patterns in specific 

calculations, with the consequence that a specific alternate sequence of instructions 

may be used to achieve the same effect at a lower cost. Therefore, I consider it 

appropriate to attempt to perform or expedite the task of code generation with an 

unpredictable, stochastic evolutionary computation method.  

 

Conventional mathematic analysis does not, or cannot, provide analytic 

solutions: In addition to the reasoning given above, analytic examination of the 

semantics of a program through formal methods or exhaustion is a highly involved 

process.  

 

An approximate solution is acceptable (or is the only result that is ever likely to 

be obtained): In this task, an approximate solution is absolutely not acceptable. It is 

possible that many runs of the LGP system will result in the population becoming 

trapped in local minima that have somewhat similar, but not exactly the same, 

semantics as the input parse tree. If this were a symbolic regression problem, if the 

solutions were extracted at this point, they may be considered to be acceptable 

models of the input data. This is not the case with code generation: the only 

acceptable solution is one that exhibits all of the required semantics and does not 

otherwise damage the state of the system. 
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4 Solution Methodology 
This section describes the methods devised to apply LGP in the task of performing 

the task of code generation in a compiler. These include the specification of the scope 

of the project and the associated experiments, the definition of a suitable fitness 

function to guide the evolutionary process, the methods used to detect when the task 

has been completed satisfactorily and the different models of evolution considered 

during experiment. 

 

4.1 Scope of Experiments 

The code generation device must be able to successfully transform input parse trees 

containing any valid combination of the following nodes. A valid combination is one 

where each node is saturated and has the maximum number of possible child nodes. 

A program is executed by evaluating its root node. 

 

Readable name Parse tree 

representation 

symbol 

Number of 

children 

Semantics 

Semicolon – 

sequencing operator ; 
2 Evaluate the program in the left child 

position, then evaluate the program in the 

right child position. Return the value 

returned by the right child. 

Addition operator 

+ 
2 Evaluate the program in the left child 

position, then evaluate the program in the 

right child position. Return the sum of these 

two values. 

Subtraction operator 

- 
2 Evaluate the program in the left child 

position then evaluate the program in the 

right child position. Return the value 

returned by the left child subtract the value 

returned by the right child. 

Multiplication 

operator * 
2 Evaluate the program in the left child 

position, then evaluate the program in the 

right child position. Return the product of 

these two values. 

Protected division 

operator / 
2 Evaluate the program in the left child 

position, then evaluate the program in the 

right child position. If the value of the right 

child is zero, return 1. Else return (the value 

of the left child / the value of the right child). 

Assignment operator 

= 
2 Evaluate the program in the right child 

position. Consider the left child node as a 

reference to a variable and assign the value 

of the right child to this variable. 

Variable <string> 0 When evaluated, return the value of the 

variable from memory. 

 

Table 4.1: Table of parse tree nodes that may appear in an input program IR 
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The assignment operator can only have a variable node as its left child, and this 

variable node cannot refer to a constant. 

 

The symbol table part of the IR contains the following information for each variable: 

 

Name Function 

Symbolic name The symbolic name of the variable as given in the high level language 

source file 

Nature Describes the scope of the variable. Can take one of the following 

values: 

 

INPUT: The variable exists outside the scope of the subroutine. This 

variable has a starting value that should be placed into memory during 

the initialisation stage. Operations on this variable should be reflected 

in the low level translation of the parse tree. 

 

OUTPUT: This variable exists outside the scope of the subroutine. This 

variable contains garbage after the initialisation stage. Operations on 

this variable should be reflected in the low level translation of the parse 

tree. 

 

INTERMEDIATE: This variable exists only within the scope of the 

subroutine. This variable contains garbage after the initialisation stage. 

Operations on this variable do not need to be reflected in the low level 

translation of the parse tree. 

 

SYMBOLIC_CONSTANT: This variable is initialised with a constant 

value during initialisation. The low level translation of the parse tree 

should not attempt to the change the value of this variable during 

execution. This category of variables includes integer literals (i.e. the 

integer literal ‘2’ is a variable named ‘2’ of type 

SYMBOLIC_CONSTANT with the constant value 2). 

 

Table 4.2: Description of possible symbol table entries in an input program IR 

 

The target architecture for the evolution of programs is a simple register machine. 

The machine contains two memory areas for storage of values: a register file and a 

symbolically addressable memory.  

 

The register file consists of four of general purpose registers indexed from zero. The 

program counter is not available to the program for read or write access. The 

symbolically addressable memory contains an arbitrary number of cells that may be 

addressed by the symbolic name of a variable. Both the register file and the memory 

are available to programs for both read and write access at any time. 
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The following simplified, RISC-like low level instruction set is specified for the 

purposes of this project. An instruction in the low level language consists of an 

operation and a number of operands whose quantity and nature are defined by the 

choice of operation. This instruction set is orthogonal; any register may be used 

where a register argument is expected. The following instructions are defined: 

 

<r> indicates that the argument is a register index 

<s> indicates that the argument is a symbolic variable name 

<v> indicates that the argument is an integer 

 

  

ADD   <r>a, <r>b, <r>c 

 

Addition 

 

  Calculates the sum of the values stored in registers 

<r>a and <r>b and stores the result in <r>c. 

 

    

 SUB   <r>a, <r>b, <r>c Subtraction  

  Calculates <r>a - <r>b and stores the result in <r>c.  

    

 MUL   <r>a, <r>b, <r>c Multiplication  

  Calculates <r>a * <r>b and stores the result in <r>c.  

    

 DIVP  <r>a, <r>b, <r>c Protected division  

  If <r>b is non-zero, calculates <r>a divided by <r>b 

and stores the result in <r>c. 

Else, store 1 in <r>c. 

 

    

 LOADS <r>a, <s>b Symbolic load  

  Retrieves the value associated with the symbol <s>b 

and stores it in <r>a. 

 

    

 STORS <r>a, <s>b Symbolic store  

  Stores the current value of <r>a in the memory 

associated with the symbol <s>b. 

 

    

 LOADV <r>a, <v>b Direct value load  

  Stores the value <v>b in the register <r>a.  

    

 

Table 4.3: Allowed instruction set of low level language instructions for code generator 

 

The only data type used is the 64-bit signed integer. All variables in memory, 

symbolic constants, direct values and register locations are of this data type. 

 

A set of ten input program IR of increasing complexity have been designed as target 

programs for the various code generation methods to attempt. They have the 

following properties: 
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Program A01: Assignment of a single constant to a variable. 

a = 3 

 

Program A02: Assignment of two constants to two variables. 

a = 234; b = 1056 

 

Program B01: Simple calculation. Addition of two input variables to be stored in 

one output variable. 

a = b + c 

 

Program B02: Two calculations with a non-commutative arithmetic operation. 

a = b – (c + d) 

 

Program B03: Complex multiple stage calculation involving a constant. 

a = (18 * (c – d)) + b 

 

Program B04: Complex multiple stage calculation with division. 

a = ((c – 90) * (b + d)) / e 

 

Program C01: Simple multiple stage calculation involving intermediate variable 

b = c + d; a = b * e 

 

Program D01: Calculation involving intermediate variables with great possible 

optimisation 

d = b + c; e = b – c; a = d + e 

 

Program D02: Calculation involving intermediate variables; difference of two 

squares 

d = b + c; e = b – c; a = d * e 

 

Program D03: Complex calculation involving intermediate variables 

i1 = ((b + c) – d); i2 = ((b – c) + d); a = i1 * i2 

 

A tree walking algorithm (described later) will be applied to each of the defined 

programs to produce a predictable program length for comparison with those 

produced by the evolutionary methods. A fully optimised ‘perfect’ solution as 

produced by a skilled human programmer has also been produced. A full list of these 

input program IRs with parse tree visualisation and human-developed ‘perfect’ 

solution are given as an appendix. 

 

4.2 Application of Linear Genetic Programming 

Two different methods of applying LGP are considered, which will be referred to as 

‘standard’ and ‘incremental’. 
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In the ‘standard’ method, the evolution system is used to attempt to evolve a single, 

complete solution program expressing the same semantics as the input program. This 

process is guided by the LGP heuristic and a fitness metric described later in the 

dissertation. 

 

Candidate solutions will take the form of strings of atomic instructions written in the 

low level language. The population model used in this system is a steady state model 

where the number of candidate programs in the population will remain constant 

throughout. For each new program produced by a genetic operation, a tournament is 

used to choose a random program with low fitness (i.e. a tournament is held, selecting 

the lowest fitness from the participants) to be removed from the population. The 

tableau of genetic system parameters will be given as part of the design of 

experiments section. 

 

In the ‘incremental’ method, the input parse tree from the IR is mechanically 

transformed into a series of smaller programs that, when executed sequentially, have 

the same semantics as the complete program. A solution program for each of these 

subprograms is evolved in turn, and these are concatenated to produce a solution to 

the input program. 

 

For example, consider the complex program shown below: 

 

 
 

d = b + c; 

e = b – c; 

a = d * e; 

 

Figure 4.4: Visualisation of complex program to be handled by incremental method 

 

This program is transformed by the ‘incremental’ method by taking each interior 

node in turn and transforming these into isolated, smaller programs. The interior 

nodes furthest down the graph are considered first (i.e. the high level program 

fragments with the highest precedence). 
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Here, the transformation begins with the + node in the lower left of the graph. This is 

extracted into a separate program with an assignment node at its root, a new 

temporary variable as its left child, and the extracted program as its right child. The 

extracted subtree from the original program is replaced with a node referencing the 

same temporary variable. It can be seen that executing the new subprogram followed 

by the altered program does not result in a change in semantics if the temporary 

variable is not considered to be a critical part of the program; this variable is added to 

the symbol table (all program fragments share a global symbol table) as an 

intermediate variable. 

 

 
 

X = b + c 

 
d = X;dddd 

e = b - c; 

a = d * e; 

 

Figure 4.5: Produced program fragment and the resulting modified program tree after the 

first extraction by incremental method 

 

 
X = b + c       Y = (d = 

X) 

 
Y;    dddd 

e = b - c; 

a = d * e; 

 

Figure 4.6: Produced program fragments and the resulting modified main program tree after 

the second extraction by incremental method 
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This process continues until a number of subprograms equal to the number of interior 

nodes in the original program have been created. 

 

The evolutionary system is then tasked with evolving solution programs to each of 

these subprograms in turn, and then concatenating the resulting solutions into a 

composite solution program which will have the same semantics as the original input 

program. 

 

I hypothesise that, with increasing input program complexity, evolving a large 

number of smaller programs using the ‘incremental’ method will result in a 

considerably lower processor time requirement would be required using the 

‘standard’ method. 

 

4.3 Comparison to Naïve Algorithm 

A simple tree walking algorithm has been developed capable of mechanically 

generating low level code given an input program IR. The following pseudocode 

algorithm is used to construct instruction strings: 

 

 TreeWalkingCompiler(node, register) 

  IF node is interior node 

   IF node is semicolon 

    TreeWalkingCompiler(left_child, register) 

    TreeWalkingCompiler(right_child, register) 

   ELSE IF node is assignment 

    TreeWalkingCompiler(right_child, register) 

    output [STORS register left_child] 

   ELSE IF node is calculation (one of +,-,*,÷) 

    TreeWalkingCompiler(left_child, register) 

    TreeWalkingCompiler(right_child, register + 1) 

    output [calc register register+1] 

   ENDIF 

  ELSE 

   output [LOADS register left_child] 

  ENDIF 

 END 

 

Listing 4.7: Pseudocode for tree walking computer algorithm 

 

This code generator is capable of generating code for all of the defined input 

programs; it requires a virtual machine register file of the same length as the depth of 

the most complex calculation (three registers for programs B02, B03 and B04).  
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This code generator does not perform any kind of analysis or optimisation on the 

input program. For example, when processing programs C01, D01, D02 and D03 it 

will generate code that accesses the intermediate variables, and for programs D01, 

D02 and D03 it will generate code that explicitly performs every calculation as 

specified. 

 

This tree walking algorithm will be applied to each of the defined programs to 

produce a predictable program length for comparison with those produced by the 

evolutionary methods. A fully optimised ‘perfect’ solution as produced by a skilled 

human programmer has also been produced. 

 

4.4 Refinement Stage 

An additional stage of processing is proposed to investigate the ability of LGP to 

improve solution programs that have already been found. 

 

The ‘refinement’ stage occurs after a solution program has been developed by the 

evolutionary system. A new population of random instruction strings is produced, 

with a predefined fraction of the population initialised as copies of the previously 

identified satisfactory solution program. The termination criterion of this new system 

is set to return the best-of-run program after a predefined number of new candidate 

solution creations. The remaining parameters of the evolutionary system, such as 

evolutionary system parameters and instruction set, remain unchanged. 

 

The evolutionary system will attempt to breed fitter programs and, given that solution 

programs are already present in the genetic population, these fitter programs will 

most likely be modified copies of the solution programs improved by application of 

the genetic operations. As a result, it is believed that the refinement stage will result 

in the development of programs of successively greater quality (in these experiments, 

shorter length). 

 

4.5 Design of Fitness Function 

In order to apply evolutionary methods such as LGP in solving a problem, it is 

necessary to provide a ‘fitness function’. The fitness function provides the mapping 

from candidate solutions to fitness values, allowing the evolutionary system to 

determine the suitability of a candidate solution. With this mapping, the system is 

able to identify the most fit candidate solutions from the population and bias the 

reproduction stages so successive generations will tend to contain a high 

concentration of modified copies of these most fit candidate solutions. 

 

For the LGP system to function effectively, the fitness function must have the 

following properties: 
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The fitness function should be of a generally continuous nature, with successively 

decreasing output values as a candidate solution becomes ‘closer’ to an acceptable 

solution. Without the ability to sort the population of candidate programs by their 

perceived correctness, the LGP will not be able to introduce bias in the selection of 

programs for the reproduction stage. As a result, the model of gradual program 

improvement as useful genetic material is identified and propagated will not hold. 

 

The fitness function should be sufficiently general to allow its use in the generation 

of code for any possible input IR, and not require significant human intervention or 

configuration to adapt to a different input IR. This requirement ensures that the LGP-

based code generator is suitable replacement for an algorithmic code generator. 

 

The fitness function should contain as little a priori information about the instruction 

set as possible, which will ensure that the LGP-based code generator can be extended 

automatically by inserting additional instruction semantics. 

 

The task of the fitness function in this project is to measure the degree of semantic 

correlation between the input program IR and an output low level candidate solution 

instruction string. Considering only the final values of the variables after execution 

has terminated is not sufficient to meet the above requirements, as this does not allow 

for the case where a candidate solution performs all the calculations required of it, but 

does not store these values to memory after they are calculated (or they are 

subsequently overwritten with garbage values). Such a program is clearly ‘close’ to 

the semantics of the input program, but an examination of the output values would 

dismiss it as of very little suitability. 

 

Although it may be possible to devise a common language capable of expressing the 

exact semantics of programs in both the input and output program forms, it would be 

difficult to quantify the degree of similarity from descriptions in this language, and 

then transfer this into the form of a computer program. 

 

Instead, a sampling of the possible values of the input variables is considered. Each 

sample is a possible instantiation of the input state of the program before it is 

executed. This is analogous to compiler testing. It is believed that through a 

representative sampling of the input values, enough data will be available to construct 

a sufficient expression of the state mapping defined by the program. The number of 

samples will affect the accuracy of the expression, and therefore the accuracy of the 

output program. If there are too few samples, then the resulting program may exploit 

properties specific to the sample set. Increasing the number of samples will increase 

the time required to calculate the fitness of a candidate solution program. 

 

For each sample set of input values, a fitness case is built by evaluating the input 

parse tree program. Each fitness case contains the values of the symbolic variables 

before execution, after execution, and a full record of all the intermediate evaluations 
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that took place during evaluation. In addition, the number of calculations that were 

required, in total, to produce the result value is recorded as a heuristic measure of the 

complexity of calculation. 

 

To calculate the degree of semantic correlation, each candidate program is tested 

against each fitness case in turn. A virtual machine instance is created and reset; the 

input symbolic variable value set is copied from the fitness case into the variable 

machine symbolic variable memory, and the execution started. When execution 

terminates, the final values of the target variables in the memory of the virtual 

machine are compared against those from the fitness case. If the values of all target 

variables are exactly the same, no penalty is applied. If the value of a variable differs 

from its target value, a constant penalty is given together with a variable amount of 

penalty as a function of the error. In addition, a fitness penalty will be given 

proportional to the length of the candidate program, causing the evolutionary system 

to favour programs of a smaller length. 

 

During the execution of the candidate program, a line by line record of the execution 

is produced. This record contains, for each executed arithmetic instruction, the 

operation that was performed, the register locations and values of the operands used 

and the register location and value produced as a result. For symbolic loads, only the 

destination register location and value is stored. It is possible to perform some 

analysis of the program without this record, but this may become complicated if 

conditional or jumping instructions are applied. With the introduction of the fitness 

cases as fixed points in the input space, it makes sense to continue in this vein by 

analysing the exact actions taken as a result of these input sets. 

 

The complete record allows for the construction of a timeline showing the values of 

the registers after each instruction execution. If the registers are not reset to a known 

value before execution begins, this record shows which registers hold determinate 

values (which may be assumed to be of some use), or indeterminate garbage values 

(which will not be the same between executions, and therefore should not be relied 

upon in the output program).  

 

Fitness bonuses and penalties are activated during analysis of the behaviour of the 

candidate program. These bonuses are designed to ‘coax’ the evolution of candidate 

programs towards those which a human programmer would consider productive. 

 

The following productive behaviour is rewarded: 

• Reading the value of a symbolic variable. 

• Writing to the value of a variable that may change during execution. 

• Writing to the value of a variable that must change during execution. 

• Reading from a register whose value is determinate at the time of reading. 

• Performing a calculation that results in a value that was encountered during 

construction of the corresponding fitness case. An added bonus is applied if 
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the low level instruction correlates to the construct in the parse tree that was 

used. 

 

The following counterproductive behaviour is penalised: 

• Writing to a register and never subsequently reading it. 

• Writing to a symbolic variable (other than one designated as an output) and 

never subsequently reading it. 

• Writing to a register twice in succession without reading it in the interval. 

• Reading from a register containing an indeterminate value. 

• Performing a calculation upon indeterminate values. 

• Writing an indeterminate value to any register. 

• Writing an indeterminate value to any symbolic variable. 

 

It is hypothesised that the crossover operation will combine programs that are correct 

‘up to a point’ with genetic material from elsewhere to produce child programs that 

provide further functionality than either of their parents. It is also hypothesised that 

the mutation operations will act to ‘repair’ programs by removing or rewriting 

counterproductive instructions in programs, hence increasing their suitability. 

 

The specification of a large number of fitness modifiers is intended to provide a more 

gradual fitness landscape. If only the error in the values of target variables is 

considered, the mapping from input candidate program space will be discontinuous. 

In such a space, many programs will share the same fitness value, and the 

evolutionary system will be able to offer little improvement. 

 

With the above modifiers, there is the risk that the system may produce a program 

that calculates a useful value at some point during execution, and then attempt to 

improve such a program by repeating the segment that triggers the reward, resulting 

in a program that does nothing more than calculate the same (albeit useful, or even 

necessary) value multiple times. Given time, such programs may dominate the 

candidate program population. To prevent this, the system can be configured to allow 

these rewards to be awarded only finitely many times per action, or per expected 

appearance of a result value. The complexity heuristic is designed so that a candidate 

program that correctly implements a multiple stage calculation is deemed to be more 

suitable than a candidate program that performs a simple calculation multiple times. 

 

A ‘hit’ is recorded for a given fitness case if the resulting value for each variable is 

equal between the resulting state of the virtual machine memory after execution has 

terminated and the final state of the parse tree evaluation. If a ‘hit’ is recorded for 

each fitness case in the training set, the candidate program is tested against each 

fitness case in the test set. If a ‘hit’ is recorded for all fitness cases in the test set, the 

candidate program is judged to be a satisfactory solution: the evolutionary system 

terminates and returns the candidate program. 
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4.6 Genetic Operations 

There are three operations available to the evolutionary system to produce new 

candidate solution programs through manipulation of existing candidates. These are 

typical operators used in many LGP applications. During the reproduction stage, 

these actions are selected randomly according to rate parameters given to the 

evolutionary system. 

 

• Rate of crossover  – The probability that the reproduction stage will result 

in new programs being produced by the crossover operation.  

• Rate of mutation  – The probability that the reproduction stage will result 

in new programs being produced by the mutation operation.  

• Rate of reproduction  – The probability that the reproduction stage will result 

in new programs being produced by the reproduction operation. 

Tournament selection will be used to select programs from the candidate solution 

population for application to the available genetic operations. In tournament 

selection, a set number of programs are randomly selected from the population to 

participate in the tournament. From these programs, the M programs with the highest 

fitness values are passed to the genetic operation. 

 

The population model used in this system is a steady state model where the number 

of candidate programs in the population will remain constant throughout. For each 

new program produced by a genetic operation, a tournament is used to choose a 

random program with low fitness (i.e. a tournament is held, selecting the lowest 

fitness from the participants) to be removed from the population 

 

The crossover operation combines the contents of two source instruction strings to 

produce two new instruction strings, which are then inserted into the population as 

two new individuals. Transition points are randomly placed within the two instruction 

strings. Then, new strings are constructed by copying instructions from the first string 

until the first transition point, then copying instructions from the second string 

starting at the first transition point until the second transition point, then copying the 

remaining instructions from the first string starting from the second transition point 

until the end. 
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 Instruction String a Instruction String b 

     

 Instruction a1  Instruction b1  

 Instruction a2  Instruction b2  

 Instruction a3  Instruction b3  

 Instruction a4  Instruction b4  

 Instruction a5  Instruction b5  

 Instruction a6  Instruction b6  

 Instruction a7  Instruction b7  

 Instruction a8  Instruction b8  

 Instruction a9    

     

     

 New Instruction String a New Instruction String b 

     

 Instruction a1  Instruction b1  

 Instruction b3  Instruction b2  

 Instruction b4  Instruction a2  

 Instruction b5  Instruction a3  

 Instruction b6  Instruction a4  

 Instruction a8  Instruction a5  

 Instruction a9  Instruction a6  

   Instruction a7  

   Instruction b7  

   Instruction b8  

 

Figure 4.8: Results of the crossover operation used in the experiment on two instruction 

strings 

 

The effect of the mutation operation is select one operation at random from 

‘insertion’, ‘deletion’ and ‘alteration’. Insertion inserts a new random instruction at a 

random position within the existing instruction string. Deletion selects a random 

instruction from the existing instruction string and removes it (deletion is not 

available if the instruction string only consists of a single instruction). The function 

of alteration is to randomly permute some part of an existing instruction chosen at 

random from the instruction string. One component of the instruction is chosen at 

random from the available components (as described in the instruction set listing 

previously). If an operand component is chosen, it is replaced with an operand of 

compatible type. If the operation component is chosen, then the all components of the 

instruction are reinitialised. 

 

4.7 Experimental Measurements 

The complexity of the required calculations increases with each program. With this 

increasing complexity, additional opportunities for optimisation become available, 

such as the omission of unnecessary calculations, or the ‘folding’ of intermediate 

calculations into the program (hence obviating the need to store and load from the 

intermediate variables). For each of these input programs, the software has been used 
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to calculate two primary metrics: ‘Computational Effort’ and the distribution of 

solution program lengths. 

 

The ‘Computational Effort’ (EI), for a given program, evolutionary system parameter 

set and instruction set, is the minimum number of low level language instructions that 

must be considered (executed in the low level virtual machine) to be able to evolve a 

solution program with 99% probability of success. When a new candidate instruction 

string is created by any method, its length in instructions is tallied as ‘considered’. It 

is an adaptation of the Computational Effort (E) measure used by Koza (Koza, 1992), 

where the number of complete candidate solutions is used. A measure of required 

program quanta (LISP program nodes in the case of the S-Expressions used by Koza) 

was proposed by Koza, but was not implemented due to insufficient processing 

capacity and other factors. This different measure is required to compare the 

difficulty of evolving solutions using the ‘standard’ method and the ‘incremental’ 

method, where the number of candidate solutions produced cannot be used as a 

measurement. 

 

EI is used as an empirical measure of the difficulty of evolving a solution program 

using the given parameters: a higher EI indicates that more processing time is 

required to evolve a solution. For a series of programs of increasing complexity, EI 

can be used to identify trends in processing requirements. EI is calculated as follows: 

 

Koza suggests that multiple independent runs of the evolutionary system should be 

attempted to minimize the effect of premature population convergence to a sub-

optimal solution. Over a large number of runs (200 in this project), we measure the 

number of instruction considered to evolve each solution program. If a run does not 

produce a solution program within the maximum number of allowed creations, that 

run is aborted. 

 

These measurements are then collected to compute the cumulative probability P(i) of 

a solution program being produced as a function any given number of instruction 

considerations i. The probability of producing a solution program at least once in R 

runs can be calculated as 1 – (1 – P(i))
R
. If the desired probability of success z is fixed 

at a high value, here 99%, then the number of required runs can be calculated by: 

(where the brackets denote the ceiling function) 
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This function defines thresholds where with increasing P(i), the number of required 

runs decreases. For example, if P(i) is 0.68 then four independent runs are required; if 

P(i) is 0.78 then three independent runs are required and if P(i) is 0.90 then two 

independent runs are required. Multiplying R(z, i) by i gives the total number of 
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instructions that must be considered if each run is aborted after considering i 

instructions. EI is the minimum value of i . R(z, i) over all i for z = 99%. 

 

This can be visualised in a performance curve as shown below: 

 

 
 

Figure 4.9: Example of performance curve showing required number of instruction 

considerations for a given cumulative probability 

 

In this graph, the cumulative probability P(i) is shown as the curve rising from left to 

right. The required number of instruction considerations i . R(z, i) is shown as the 

heavier curve generally falling from left to right. As the cumulative probability 

increases beyond the thresholds given by the R(z, i) function, the number of 

independent runs necessary to produce a solution program decreases, giving the 

sawtooth nature to the i . R(z, i) curve. This curve hits a minimum at i = 404000, 

where four runs are necessary, giving an EI value of 1616000. 

 

For the ‘standard’ method, EI is calculated as above over 200 runs with z = 99%. For 

the ‘incremental’ method, 200 attempts at evolving the input program are used, with 

the sum of the EI values for each subprogram taken as the EI value for that attempt. It 

is not likely that EI values for a given input program are directly comparable between 

the two methods, but the trends detectable when considering a series of successively 

more complex programs are of value. Computational effort is not considered where 

the refinement operation is applied. 

 

The second metric used to evaluate the evolutionary methods is the distribution of 

solution program lengths. 
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For both the ‘standard’ and the ‘incremental’ methods, the evolutionary system has 

been used to develop 200 solution programs for each input program. For each of 

these 200 solution programs, the refinement operation has been applied 5 times to 

produce a collection of 1000 solution programs. The distribution of solution program 

lengths within these sets can be used as a point of comparison, together with the 

program lengths produced by the tree walking algorithm and the ‘optimal’ solution 

produced by a human programmer. 

 

4.8 Tableaux of Evolutionary System Parameters 

For the measurement of computational effort by ‘standard’, the following parameters 

are used: 

 

Population size: 1000 

Population initialisation modus: Ramp of program lengths 

Initial maximum low level program size: 50 

Initial minimum low level program size: 5 

Maximum allowed program recreations before abort: 25000 

Re-attempt crossover if program length over: 500 

Tournament size for crossover: 5 

Tournament size for reproduction: 5 

Tournament size for mutation: 5 

Tournament size for deletion: 5 

Maximum number of niche pre-emption repeat runs: 1 (one run only: no pre-emption) 

Rate of crossover: 0.49 

Rate of mutation: 0.49 

Rate of reproduction: 0.02 

Fitness case training set count: 20 

Fitness case test set count: 10 

Number of registers in virtual machine: 4 

Low level instruction set: ADD, SUB, MUL, DIVP, LOADS, 

LOADV, STORS 

Low level instruction random selection rates: Equal distribution among all 

instructions. 

Hits measurement: Number of training fitness cases 

successfully emulated by low 

level candidate program. 

Success criterion: Hits equal to number of training 

fitness cases. 

Failure criterion: Number of allowed program 

recreations exceeded. 

 

Table 4.10: Tableau of parameters for computational effort experiments using ‘standard’ 
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For the measurement of computational effort by ‘incremental’, the following 

parameters are used for each subprogram fragment: 

 

Population size: 1000 

Population initialisation modus: Ramp of program lengths 

Initial maximum low level program size: 20 

Initial minimum low level program size: 2 

Maximum allowed program recreations before abort: 25000 

Re-attempt crossover if program length over: 50 

Tournament size for crossover: 5 

Tournament size for reproduction: 5 

Tournament size for mutation: 5 

Tournament size for deletion: 5 

Maximum number of niche pre-emption repeat runs: 1 (one run only: no pre-emption) 

Rate of crossover: 0.49 

Rate of mutation: 0.49 

Rate of reproduction: 0.02 

Fitness case training set count: 20 

Fitness case test set count: 10 

Number of registers in virtual machine: 4 

Low level instruction set: ADD, SUB, MUL, DIVP, LOADS, 

LOADV, STORS 

Low level instruction random selection rates: Equal distribution among all 

instructions. 

Hits measurement: Number of training fitness cases 

successfully emulated by low 

level candidate program. 

Success criterion: Hits equal to number of training 

fitness cases. 

Failure criterion: Number of allowed program 

recreations exceeded. 

 

Table 4.11: Tableau of parameters for computational effort experiments using ‘incremental’ 

 

Although, different program length ramps are used for the standard and incremental 

methods, I believe that this has limited effect on the number of instruction 

considerations necessary. 

 

For the measurement of program length by ‘standard’, the following parameters are 

used when evolving the initial length of a program: 

 

Population size: 1000 

Population initialisation modus: Ramp of program lengths 

Initial maximum low level program size: 50 

Initial minimum low level program size: 5 
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Maximum allowed program recreations before abort: 25000 

Re-attempt crossover if program length over: 500 

Tournament size for crossover: 5 

Tournament size for reproduction: 5 

Tournament size for mutation: 5 

Tournament size for deletion: 5 

Maximum number of niche pre-emption repeat runs: 1000 (niche pre-emption is used 

to ensure the eventual creation of 

an acceptable candidate) 

Rate of crossover: 0.49 

Rate of mutation: 0.49 

Rate of reproduction: 0.02 

Fitness case training set count: 20 

Fitness case test set count: 10 

Number of registers in virtual machine: 4 

Low level instruction set: ADD, SUB, MUL, DIVP, LOADS, 

LOADV, STORS 

Low level instruction random selection rates: Equal distribution among all 

instructions. 

Hits measurement: Number of training fitness cases 

successfully emulated by low 

level candidate program. 

Success criterion: Hits equal to number of training 

fitness cases. 

Failure criterion: None – continue until success 

criterion is met. 

 

Table 4.12: Tableau of parameters for program length experiments using ‘standard’ 

 

For the measurement of program length by ‘incremental’, the following parameters 

are used when evolving the initial length of a program: 

 

Population size: 1000 

Population initialisation modus: Ramp of program lengths 

Initial maximum low level program size: 20 

Initial minimum low level program size: 2 

Maximum allowed program recreations before abort: 25000 

Re-attempt crossover if program length over: 50 

Tournament size for crossover: 5 

Tournament size for reproduction: 5 

Tournament size for mutation: 5 

Tournament size for deletion: 5 

Maximum number of niche pre-emption repeat runs: 1000 (niche pre-emption is used 

to ensure the eventual creation of 

an acceptable candidate) 

Rate of crossover: 0.49 
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Rate of mutation: 0.49 

Rate of reproduction: 0.02 

Fitness case training set count: 20 

Fitness case test set count: 10 

Number of registers in virtual machine: 4 

Low level instruction set: ADD, SUB, MUL, DIVP, LOADS, 

LOADV, STORS 

Low level instruction random selection rates: Equal distribution among all 

instructions. 

Hits measurement: Number of training fitness cases 

successfully emulated by low 

level candidate program. 

Success criterion: Hits equal to number of training 

fitness cases. 

Failure criterion: None – continue until success 

criterion is met. 

 

Table 4.13: Tableau of parameters for program length experiments using ‘incremental’ 

 

For the refinement stage, the programs produced by either incremental or standard are 

treated by an LGP system using the following parameters:  

 

Population size: 1000 

Population initialisation modus: X * population size of copies of 

previously found solution 

program. ((1 – X) * population 

size) ramp of program lengths. 

Fraction of population initialised with copies of previous 

solution: 

0.025 (25 programs) 

Initial maximum low level program size: 50 

Initial minimum low level program size: 5 

Maximum allowed program recreations before abort: 25000 

Re-attempt crossover if program length over: 50 

Tournament size for crossover: 5 

Tournament size for reproduction: 5 

Tournament size for mutation: 5 

Tournament size for deletion: 5 

Maximum number of niche pre-emption repeat runs: 1 (one run only: no pre-emption) 

Rate of crossover: 0.49 

Rate of mutation: 0.49 

Rate of reproduction: 0.02 

Fitness case training set count: 20 

Fitness case test set count: 10 

Number of registers in virtual machine: 4 

Low level instruction set: ADD, SUB, MUL, DIVP, LOADS, 

LOADV, STORS 
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Low level instruction random selection rates: Equal distribution among all 

instructions. 

Hits measurement: Number of training fitness cases 

successfully emulated by low 

level candidate program. 

Success criterion: Hits equal to number of training 

fitness cases. Continue until 

number of allowed recreations is 

exceeded. 

Failure criterion: None – continue until success 

criterion is met. 

 

Table 4.14: Tableau of parameters for refinement stage population length experiments 
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5 Design and Implementation of Software 
This section describes the software that has been designed and created to perform the 

experiments described in the previous section. An outline of the design of the 

software is given and each phase of the software is then examined in detail. 

 

5.1 Outline of Software 

The software used to perform the experiments consists of a single command-line 

executable written in C++. The software requires the user to supply command-line 

arguments instructing it which type of experiment to perform, and which input 

program on which to attempt code generation. The parameters of the LGP system, 

such as population size, recombination operation rates, and the number of repeat 

experiments to perform, are stored in parameter files. 

 

Execution of the software uses the following phases. 

 

• Parse the command-line arguments passed to the program. 

• Read an input program in plain text from a text file into memory. 

• Construct the in-memory representation of the parse tree and symbol table. 

• Read and parse the parameters to the LGP system from the parameters file. 

• Prepare the instruction set that will be made available to the LGP system. 

• Perform the experiment as defined by the command-line arguments. 

• Perform refinement stage using the program generated by the above 

experiment. 

• Repeat evolution experiment and/or refinement stage as defined by the 

parameter file. 

The program performs the required experiments and writes its. It can optionally 

output information regarding the current best-of-run program to the console window 

during execution, or it can be set to act in a fully interactive mode, pausing whenever 

a ‘breakthrough’ has been made by the program. This mode allows the user to step 

through a simulation of the low level virtual system running the resulting low level 

program. This mode is suitable for demonstrations. 

 

Throughout the program, the following typedef are used: 

 
 BigInteger 

Signed integer type used throughout the program. An alias of long 

long int (64-bit signed integer). The large range of values is 
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necessary to handle the large random numbers produced as a result 

of repeated attempted multiplication of numbers. It appeared to be 

very difficult to evolve programs without the availability of 64-bit 

values. It is possible to typedef BigInteger to a well-defined C++ 

arbitrary precision signed integer data type such as those provided by 

GMP, however long long int was chosen for fast execution. 

 
 VM_TYPE 

Signed integer type used in the low level virtual machine for all 

values. An alias of BigInteger. 

 
 PT_VALUE_TYPE 

Signed integer type used in the high level parse tree interpreter for all 

values. An alias of BigInteger.  

 
 PT_COMPLEXITY_TYPE 

Unsigned integer type used in the high level parse tree interpreter for 

the values of the complexity heuristic. An alias of unsigned int (32-

bit unsigned integer). 

 

5.2 Command-Line Arguments 

The software requires the user to supply command-line arguments instructing it 

which type of experiment to perform, the location of the input program on which to 

perform code generation, and the location of the parameter files. 

 

The program has the following invocation syntax: 

 
evolve.exe [source_program_file] [analysis_type] [parameters_file]  

               [parameters_file2] [output_file] 

 

[source_program_file] is a string containing the location of the input program on the 

hard drive. Input programs are stored in a plain text format for easy modification by 

the user. The full syntax of this file format is described later in this dissertation. 

 

[analysis_type] is a string indicating what form of experiment is to be performed. It 

can take one of the following values: 

 
 attempt_standard 

Perform evolution using the ‘standard’ model using the parameters in 

[parameters_file]. 

 
 attempt_standard_with_refine  

Perform evolution using the ‘standard’ model using the parameters in 

[parameters_file], followed by the refinement stage using the 

parameters in [parameters_file2].  
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 attempt_incremental  

Perform evolution using the ‘incremental’ model using the 

parameters in [parameters_file]. 

 
 attempt_incremental_with_refine  

Perform evolution using the ‘incremental’ model using the 

parameters in [parameters_file], followed by the refinement stage 

using the parameters in [parameters_file2].  

 
 tree_walking_compiler  

Perform code generation of the input program using the tree walking 

algorithmic compiler, using the parameters in [parameters_file]. 

 
 tree_walking_compiler_with_refine  

Perform code generation of the input program using the tree walking 

algorithmic compiler, using the parameters in [parameters_file], 

followed by the refinement stage using the parameters in 

[parameters_file2]. 

 

[parameters_file] is a string containing the location of the parameters file 

containing the parameters to use during the primary stage of evolution. The full file 

format of this file is described later in this dissertation. 

 

[parameters_file2] is a string containing the location of the parameters file 

containing the parameters to use during the refinement stage of evolution. The full 

file format of this file is described later in this dissertation. 

 

[output_file] is a string containing the location of the file to which the experiment 

results will be saved. If this file already exists, the results are appended to the end of 

the existing file. 

 

Example:  

 
evolve.exe program_a01.txt attempt_standard_with_refine  

             parameters_attempt_standard_for_program_length.txt  

             parameters_attempt_refinement.txt  

             attempt_standard_with_refine_for_program_length_program_a01.txt 

 

This example instructs the software to attempt to evolve a solution to the input 

program stored in the file program_a01.txt using the ‘standard’ model of evolution 

followed by the refinement stage. The parameters for the ‘standard’ phase of 

evolution are stored in the file parameters_attempt_standard_for_ 

program_length.txt and the parameters for the refinement stage are stored in the file 

parameters_attempt_refinement.txt. The output results are stored in the file 

attempt_standard_with_refine_for_program_length_program_a01.txt. 
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5.3 Plain-text Input Program Parser 

The software contains a very basic parser and lexical analyser similar to that found in 

a regular compiler. This system is has been included to facilitate the easy 

specification of input IRs in a familiar high level C-like language, instead of error-

prone manual construction of a parse tree. 

 

The parsing of the input file is performed by the function 

ParseTreeSourceProgram_ConstructSourceProgramFromFile(). This function takes as 

its argument the location of the input program file as a string. 

 

The input file format is a simple, human readable plain-text format: 

 
-------------- 

Calculation involving intermediate variables. 

 

INPUT             c d e 

OUTPUT            a 

INTERMEDIATE      b  

SYMBOLIC_CONSTANT 2 

 

PROGRAM 

  b = (c + d); 

  a = ((b * e) + 2) 

ENDPROGRAM 

-------------- 

 

Listing 5.1: Sample plain text input program file 

 

The INPUT, OUTPUT, INTERMEDIATE and SYMBOLIC_CONSTANT lines define the symbol 

table used in the main program. Each of the lines contains a space-separated list of 

variable names. Variable names may consist of character strings (a-z, A-Z, 0-9) of 

any length, but must not start with a number. Additional INPUT, OUTPUT, etc. lines may 

be used to construct long lists of variables. These categories map exactly to those 

symbol table variable kinds defined in the Scope subsection of the Solution 

Methodology. Numeric literals used in the program body (such as 2) must be 

declared in advance in the SYMBOLIC_CONSTANT section. 

 

The input program is given between the PROGRAM and ENDPROGRAM statements; the file 

parser concatenates all the non-whitespace characters between these lines to form the 

input program in its high level form. This input language recognises variable names, 

the assignment (=), sequencing (;), addition (+), subtraction (-), multiplication (*) and 

protected division (/) operators, and parentheses. The sequencing operator enforces 

the order of evaluation between statements, but the program must not end on a 

semicolon. Space characters and newlines are ignored. There exists operator 

precedence mirroring that of C, though this can be overridden with parentheses to 

explicitly lay out the parse tree. 
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Any characters outside the PROGRAM and ENDPROGRAM pair that are not part of a symbol 

table definition line are ignored as comments (such as the dashed lines and the 

program description). 

 

After the parser has exhausted the input file, the input program is stripped of white 

space and converted into Polish notation. The program defined by the above file is 

represented as the string    ; = b + c d = a + * b e 2   . This string is then used to 

build the in-memory representation of the parse tree part of the input program IR. 

This is a straightforward operation, as the Polish notion form of the input program is 

a preorder depth-first traversal of the expected parse tree. Each language symbol has 

a direct mapping to one of the parse tree nodes defined previously. Variable nodes 

(including numeric literals) are created as necessary. This input file will result in the 

following parse tree: 

 

 
 

Figure 5.2: Parse tree visualisation for sample IR 

 

5.4 In-memory Representation of IR 

An IR is stored in memory as an instance of the ParseTreeSourceProgram structure. 

This structure has four members: 

 
std::map<std::string,  ParseTreeInteriorNodeSetMember *> interior_node_set; 

std::map<SYMBOL_TABLE_KEY, ParseTreeLeafNodeSetMember *>     leaf_node_set; 

 

ParseTreeNode *target_program; 

 

SymbolTable *symbol_table; 

 

The parse tree component is stored in the ParseTreeNode pointed to by 

target_program, together with the maps interior_node_set and leaf_node_set. 

 

These maps act as storage for lists of instances of ParseTreeInteriorNodeSetMember 

and ParseTreeLeafNodeSetMember. There exists one instance of 

ParseTreeInteriorNodeSetMember for each possible parse tree language feature. Each 
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ParseTreeInteriorNodeSetMember acts as the ‘archetype’ for the language feature, 

holding data that is common to all appearances of the language feature. This 

information includes data describing how the language feature should be interpreted 

by the parse tree high level interpreter and how the language feature should be 

represented as a string when the interactive mode is enabled. Similarly, there exists 

one instance of ParseTreeLeafNodeSetMember for each possible terminal node in the 

parse tree. Here, the only possible terminal nodes are the variables and constants 

defined in the symbol table. Each ParseTreeLeafNodeSetMember acts as the 

‘archetype’ for the terminal node, holding data that is common to all appearances of 

the terminal node. This information primarily links the node type to variables in the 

SymbolTable. 

 

These ParseTree…NodeSetMember structures collectively define the full ‘catalogue’ of 

possible nodes of which a parse tree may be constructed. They are used to prevent 

duplication of information in the parse tree: each instance of a node representing 

assignment is registered as an instance of the ‘archetype’ 

ParseTreeInteriorNodeSetMember representing the assignment operation. 

 

The parse tree itself is held within the ParseTreeNode pointed to by target_program. 

The structure ParseTreeNode is used to represent a node in the parse tree in memory. 

target_pointer points to the root node of the program; in the previous example, this 

is the semicolon node. An instance of ParseTreeNode has members indicating whether 

it represents an interior or leaf node, and a pointer to an ‘archetype’ 

ParseTree…NodeSetMember describing which one of the possible nodes from the 

catalogue it is. Interior nodes contain references to their child nodes as pointers to 

other instances of ParseTreeNode. Functions acting on programs stored in 

ParseTreeNode trees are implemented as recursive functions. 

 

The symbol table is stored in the instance of the structure SymbolTable pointed to by 

symbol_table. The symbol table is implemented as a map mapping instances of 

SYMBOL_TABLE_KEY to instances of the structure SymbolicVariableData. 

SYMBOL_TABLE_KEY is a typedef for unsigned integer type, and acts a primary key to 

the symbol table. SYMBOL_TABLE_KEY is used throughout the program wherever a 

reference to a variable is needed. A SymbolicVariableData instance holds a row of the 

symbol table; it contains the following information: 

 

• The symbolic name of the variable as a string. 

• A flag indicating if the variable may be written to. 

• A flag indicating if the variable may be read from. 

• A flag indicating if the semantics of the IR expect the value of this variable to 

assume some new value during execution of the program. 

• A flag indicating if the semantics of the IR expect the value of this variable to 

remain constant during execution of the program. 
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• A flag indicating if the contents of the variable are known at the time of 

program initialisation. 

• A flag indicating if the variable is symbolic constant (numeric literal) with a 

constant, known value implied its string name. 

• The value of the variable, if it is a constant. 

 

The symbol table can be queried by SYMBOL_TABLE_KEY or variable symbolic name. 

 

5.5 Parameters Available to the LGP System 

The parameters to the LGP system are stored externally as plain text files. The user 

must indicate the location of two parameter files, one for the main evolution stage 

and one for the refinement stage, when invoking the software. An input file consists 

of a series of string – value pairs. The full listing of possible parameters is given as an 

appendix. 

 

A set of parameters to the LGP system is stored in memory as an instance of the 

EvolutionSystem_Parameters structure. 

 

5.6 Instruction and Instruction Set Representation 

In instruction in the low level language is stored as instance of the Instruction 

structure. The Instruction structure contains a VM_INSTRUCTION_OPERATION indicating 

which operation from the available set of operations the instruction represents, and an 

array of InstructionOperand instances holding the operands of the instruction. 

 

VM_INSTRUCTION_OPERAND is an unsigned integer key to an enumeration of all the 

possible instructions in the low level language. 

 

As not all instructions in the low level language have operands of the same type, 

InstructionOperand contains an instance of each of the possible types of operand 

value: unsigned int register index, SYMBOL_TABLE_KEY variable reference and VM_TYPE 

direct integer value. The low level interpreter simply chooses the instance of the 

appropriate type when the instruction is interpreted. 

 

Candidate programs (instruction strings) are represented as instances of 

InstructionString, a typedef of std::list<Instruction>. 

 

InstructionSetProbabilistic is a structure holding a list of all the possible 

instructions from which the LGP may select. It also holds the probability that the 

LGP system may select any of the possible instructions (the operation selection rate). 

Currently, the system is configured internally to select from ADD, SUB, MUL, DIVP, 

LOADV, LOADS and STORS with equal probability. 
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5.7 Overview of Experiment Process 

The base function for performing evolution of low level programs by means of the 

LGP heuristic is EvolutionSystem_EvolveInstructionStringFromParseTree(). The 

‘standard’, ‘incremental’, ‘standard_with_refine’ and ‘incremental_with_refine’ 

models all use this function as the basis for experiments. 

 

An evolution attempt consists of the following phases. 

 

• Prepare the configuration of the low level virtual machine. 

• Prepare the fitness cases (training set and test set). 

• Initialise bookkeeping variables. 

• For the number of repeat runs defined in the parameter file: 

o Create a random population of candidate programs. 

o Calculate the fitness and hits of all candidate programs. 

o Until the number of allowed program recreations is exceeded: 

� If in reporting mode, display in-progress report. 

� If a candidate program has maximum hits, return it, end experiment. 

� Select recombination operation based on operation rates. 

� Use tournament selection to select unfit programs from population. 

� Create new programs through recombination operations. 

� Calculate the fitness of the new programs. 

� Replace unfit programs in population with new programs. 

o If the number of allowed program recreations is exceeded, proceed to next 

repeat run. 

• If the number of allowed repeat runs has been exceeded, the LGP returns a 

value indicating that it was unable to evolve a suitable candidate program. 

The success criterion for a typical evolution run is the generation of candidate 

program with the maximum amount of hits (an amount of hits equal to the amount of 

fitness cases in the training set). 
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The termination criterion for a typical evolution run is the exhaustion of all allowed 

candidate program recreations in all allowed runs. 

5.8 Candidate Solution Program Initialisation 

Within the software, a candidate solution in the population is stored in an instance of 

GeneticLinearProgram, associating each InstructionString with a float fitness 

value and an unsigned int hits value. 

 

The size of the population is given by the user in the parameter file. The population 

model used in this system is a steady state model where the number of candidate 

programs in the population will remain constant throughout; as new programs are 

created, old programs are removed. 

 

In the parameter file, the user must specify both a minimum and maximum size for 

the instruction strings in the original population. The initial population is generated 

containing programs forming a ramp of instruction lengths between these limits. 

 

When a new Instruction is created, the operation component is created first, followed 

by the operand components. The operation component is randomly selected using the 

instruction inclusion rates given in the InstructionSetProbabilistic. The operands 

of the instruction are randomly selected from the range of possible values of that 

type: register index operands are selected from the range of valid indices into the 

register file, variable reference operands are selected at random from the list of 

variables described in the symbol table while observing the restrictions imposed by 

the symbol table: a variable that is read only cannot be the subject of a STOR 

instruction. 

 

5.9 Fitness Case Construction 

Fitness cases are stored as instances of the FitnessCase structure. This structure 

contains the starting and ending values of each variable in the symbol table before 

and after the program IR is evaluated by an interpreter (as a 

std::map<SYMBOL_TABLE_KEY, VM_TYPE>, together with a log of the operations 

performed during interpretation. Fitness cases are constructed by the function 

FitnessCase_InitialiseCases() at the start of an evolutionary experiment and persist 

for the duration of the experiment. 

 

Fitness cases are constructed in a number of stages. First, the starting value of each of 

the variables is established. For input, output and intermediate variables, this is a 

random variable within some predefined bounds. For a numeric literal symbolic 

constant, this is simply the value it represents. Second, entries representing this 

initialisation of the initial variable state are entered into the evaluation log. These 

entries allow the fitness system to reward programs for recalling the values of 

variables from memory. Third, the input parse tree is evaluated in a high level 
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interpretation environment (through ParseTreeNode_Evaluate()). Finally, the values 

of the variables in the resulting state are copied into the fitness case as the target 

values for the candidate program. 

 

ParseTreeNode_Evaluate() performs high level interpretation by requesting the value 

of the root node in the input variable memory state constructed previously. The 

function recursively evaluates all the nodes in the parse tree by requesting the value 

of or the reference of the child nodes, as required by the defined semantics of each 

parse tree language feature (these are referred to as ‘evaluation’ and ‘ereferation’ in 

the source code). As the interpreter performs evaluation or ereferation on a node, it 

records the values the node obtained from its children, and the value that the node 

itself produced as a result of its defined operation. For example, an addition node 

evaluation is performed by evaluating its left child node and right child node, adding 

the resulting values, and returning the result. A variable node is evaluated by 

returning the value of the variable in the current memory state. As a result, a 

complete, chronological list of all the operations performed will be generated. This is 

recorded as the ‘model’ execution of this parse tree. 

 

To demonstrate this interpretation and logging method, we recall the example parse 

tree previously considered: 

 
 

Figure 5.3: Parse tree visualisation for sample IR 

 

The following debugging output listing shows the evaluation log for this parse tree. 

 
1 INITIALISATION    :          0 <0> to      0 <0> giving  23996     <1>. 

2 INITIALISATION    :          0 <0> to      0 <0> giving  17517     <1>. 

3 INITIALISATION    :          0 <0> to      0 <0> giving  44798     <1>. 

4 INITIALISATION    :          0 <0> to      0 <0> giving  41142     <1>. 

5 INITIALISATION    :          0 <0> to      0 <0> giving  37331     <1>. 

6 INITIALISATION    :          0 <0> to      0 <0> giving      2     <1>. 

7 ADDITION          :      23996 <0> to  17517 <0> giving  41513     <1>. 

8 MULTIPLICATION    :      41513 <2> to  44798 <0> giving 1859699374 <3>. 

9 ADDITION          : 1859699374 <3> to      2 <0> giving 1859699376 <4>. 

 

Listing 5.4: Debug output of high level evaluation log for sample parse tree 
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All values handled by the interpreter are combined with a second value indicating its 

heuristic ‘complexity of calculation’ value. This value represents the ‘difficulty’ of 

performing this calculation randomly and is used in the weighting of fitness rewards. 

The numbers in the angled brackets show the complexity heuristic value associated 

with each result value. 

 

The first six lines show the random initialisation of variables a, b, c, d and e, and the 

constant initialisation of 2. Line 7 shows the value of variable c (recalled from an 

initialised variable so has complexity 0) being added to the value of variable d (also 

recalled from an initialised variable) resulting in the value 41513 with complexity 1. 

With each successive calculation or assignment of a value, the complexity increases 

by 1. Line 8 shows the value of 41513 with complexity 2 (having been calculated 

through addition, and then assigned to the intermediate variable b) multiplied with the 

value of the variable d (recalled from an initialised variable) to produce the value 

18596993754 with complexity 3. The final line shows this value being added to the 

constant 2 to produce 1859699376 with complexity 4. 

 

The log of the evaluations is stored in an instance of ParseTreeEvaluationLog, a 

typedef of std::vector<ParseTreeEvaluationLogEntry>. Each ParseTreeEvaluation 

LogEntry corresponds to a row of the log shown above, containing two input value-

complexity pairs, an output value-complexity pair and a record of the operation 

performed. 

 

5.10 Fitness and Hits Calculation 

As described in the Solution Methodology section, the software calculates the fitness 

of a candidate solution instruction string by considering an instruction-by-instruction 

record of the actions taken when the candidate is interpreted in a virtual machine 

within the context of a given fitness case. The objective of the fitness calculation is to 

provide a graduated mapping from candidate solutions to fitness values that allows 

the LGP system to distinguish between candidate solutions by how ‘close’ they are to 

the semantics of the input IR. 

 

Within the software, a candidate solution in the population is stored in an instance of 

GeneticLinearProgram, associating each InstructionString with a float fitness 

value and an unsigned int hits value. The function GeneticLinearProgram_Fitness 

EvaluationOnTrainingSet() is used to calculate the fitness and hits values of a 

candidate program on the training set of fitness cases. 

 

The fitness value is calculated by setting the fitness of the candidate solution to a 

large high value, then considering each FitnessCase in the training set in turn to 

produce a modifier for each case, then summing these values to produce the final 

value. Low fitness values are considered to be productive, ‘reward’ modifiers have a 



 65

negative value. High fitness values are considered to be unproductive, ‘penalty’ 

modifiers have a positive value. 

 

Evaluation of the fitness modifier for a given FitnessCase is performed in a number 

of stages. First, a VirtualMachine instance is generated and its memory initialised 

with the initial values from the FitnessCase. Then, the candidate program instruction 

string is executed in the VirtualMachine to produce an output memory state and a 

VirtualMachineExecutionLog detailing the exact operations performed by the virtual 

machine during execution. A log of execution is used instead of direct analysis of the 

candidate low level program because the low level program may contain jump 

instructions, causing it to be executed in a non-linear way, which may in turn be 

affected by some property of the values in the input state. (However, in these 

experiments, the instruction set does not contain jump instructions.) 

 

The VirtualMachineExecutionLog instance is then translated into a VirtualMachine 

ExecutionRegisterStatusTimeline instance detailing the exact value of each virtual 

machine register before and every instruction execution, together with a flag 

indicating whether the value of the register is determinate at that point in time. At the 

start of low level execution, the values of all registers are indeterminate. A register is 

no longer flagged as indeterminate if its value is overwritten with that of a variable or 

a constant. If an indeterminate value is used as the input to a calculation, then the 

result is indeterminate. The timeline also stores a flag indicating when the last write 

to each register occurred; this is used to identify when a register has been written to 

and not subsequently read at any point. This is recorded as a ‘dangling write’. 

 

For each variable in the SymbolTable which has the expected_match_old_state or 

expected_match_new_state flag set, the value of the variable in the resulting memory 

state is compared with the desired value as defined by the fitness case. If these values 

do not match, a constant value penalty modifier is applied together with a variable 

modifier based on the error between the values. 

 

A fitness penalty is applied if the low level virtual machine execution ends on an 

unsafe termination condition. 

 

For each entry in the ParseTreeEvaluationLog, a number of ‘tickets’ are initialised, 

indicating the remaining number of times each reward can be given for creating that 

value.  

 

The two log formats are then analysed to effect the following fitness modifiers: 

 

If the contents of a register are indeterminate before the execution of an instruction 

and this register is read as a result of the instruction, this triggers 

FITNESS_PENALTY_FOR_REGISTER_INDETERMINATE_READ. This penalty can be triggered 

any number of times. The triggering of this penalty precludes the awarding of a ‘hit’. 
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If the contents of a register are determinate before the execution of an instruction and 

this register is read as a result of the instruction, this triggers FITNESS_BONUS 

_FOR_REGISTER_DETERMINATE_READ. This reward can be triggered any number of times. 

 

If the contents of a register are determinate before the execution of an instruction and 

this register is written to as a result of the instruction and the register has not been 

read from in the interval from when it was last written to this point, (i.e. a ‘dangling 

write’ has been overwritten), this triggers FITNESS_PENALTY_FOR_REGISTER_REWRITING. 

This penalty can be triggered any number of times. 

 

If the contents of a register are altered as the result of the execution of an instruction 

and the resulting value appears as the result of a calculation performed during the 

high level interpretation of the IR and there is a remaining ‘ticket’ associated with 

that row of the ParseTreeEvaluationLog, then FITNESS_BONUS_FOR_PRODUCING 

_USEFUL_VALUE is triggered and the amount of remaining ‘tickets’ is decremented. 

(The software has the ability to identify if the high level parse tree node and the low 

level language instruction correlate (i.e. when an addition node creates a specific 

value in the parse tree, and the low level language candidate instruction string mirrors 

this exact operation with its ADD instruction) and apply the FITNESS_BONUS_FOR 

_PRODUCING_USEFUL_VALUE_THEN_CORRECT_OPERATION reward, though this was not used 

in the experiments in this dissertation as it grants the LGP system information about 

the two language forms that it may not have.) 

 

If a LOAD instruction is used to recall a value that appears as the result of a calculation 

performed during the high level interpretation of the IR and there is a remaining 

‘ticket’ associated with that row of the ParseTreeEvaluationLog, then both 

FITNESS_BONUS_FOR_PRODUCING_USEFUL_VALUE and FITNESS_BONUS_FOR_READING 

_VALUE_FROM_MEMORY are triggered and the amount of remaining ‘tickets’ is 

decremented.  

 

If a STOR instruction is used to store the value of a register to a variable as the result of 

an instruction and the value of the register is indeterminate at that point in time, then 

FITNESS_PENALTY_FOR_STORING_INDETERMINATE_VALUE is triggered. This penalty can be 

triggered any number of times. The triggering of this penalty precludes the awarding 

of a ‘hit’.  

 

If a STOR instruction is used to store the value of a register to a variable as the result of 

an instruction and the variable is defined as expected_match_new_state by the  

symbol table (that is, its value is expected to change to a new value as a result of 

program execution and this value is of importance), then FITNESS_BONUS_FOR_WRITING 

_TO_VARYING_VARIABLE_EXPECTED_CHANGE is triggered. This reward can be triggered 

any number of times. 
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If a STOR instruction is used to store the value of a register to a variable as the result of 

an instruction and the variable is not defined as expected_match_new_state by the  

symbol table (that is, its value may change as a result of the program, but this is not 

required), then FITNESS_BONUS_FOR_WRITING_TO_VARYING_VARIABLE is triggered. This 

reward can be triggered any number of times. 

 

If a register has ‘dangling write’ status at the time of program termination, the penalty 

FITNESS_PENALTY_FOR_REGISTER_DANGLING_WRITE is triggered. This reward can be 

triggered once for each register. 

 

There exists a final fitness bonus which is not applied in these experiments: if the 

contents of a register are altered as the result of the execution of a LOADV (load 

constant) instruction and the resulting value appears as the result of a constant load 

during the high level interpretation of the IR and there is a remaining ‘ticket’ 

associated with that row of the ParseTreeEvaluationLog, then FITNESS_BONUS 

_FOR_PRODUCING_USEFUL_VALUE and FITNESS_BONUS_FOR_PRODUCING_USEFUL_CONSTANT 

are triggered and the amount of remaining ‘tickets’ is decremented. This was not used 

in the experiments in this dissertation as it grants the LGP system information about 

the two language forms that it may not have. 

 

If a ‘hit’ is not awarded for a given fitness case, a large penalty FITNESS_PENALTY 

_FOR_NON_HIT is triggered. If a ‘hit’ is triggered, then a penalty proportional to the 

length of the candidate program is triggered, but this penalty is always less than the 

penalty for not scoring a hit. These penalties are designed to reward programs which 

score hits, and reward programs of shorter length where a hit is scored. 

 

The hits value is the number of fitness cases for which the candidate solution 

produces the appropriate value for every variable in the SymbolTable which has the 

expected_match_old_state or expected_match_new_state flag set, unless the hit has 

been negated by the triggering of a penalty. The ability of a penalty to preclude the 

awarding of a hit is used to prevent the evolutionary system from returning candidate 

solution programs which have the correct effects, but rely on indeterminate values or 

related effects during their execution. As such programs will still have good fitness 

scores due to the triggering of other rewards, it is intended that the LGP system be 

able to identify programs that have the correct semantics only under specific 

circumstances and use the available recombination operations to modify the program 

to remove the instructions which manipulate the indeterminate values. 

 

5.11 Implementation of Low Level Virtual Machine 

The software uses a low level virtual machine to execute candidate programs to 

determine the results of execution given an input state, and to create an instruction-

by-instruction log of execution. 
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Execution of candidate instruction strings is performed by calling VirtualMachine 

InstructionString_ExecuteInstructionString() with a target InstructionString. 

This function has the capability to pause before each instruction execution and dump 

the current contents of the variable memory and register file to the screen. This is 

used if the fully interactive mode is enabled in the parameters file. 

 

The virtual machine has a finite register file of VM_REGISTER_GENERAL_PURPOSE_COUNT 

values of VM_TYPE type, a memory associating each variable in the symbol table 

(through SYMBOL_TABLE_KEY) with a VM_TYPE value. The virtual machine also has an 

error code variable used for reporting if and why the virtual machine was abnormally 

terminated. The virtual machine also has a program counter which is not accessible to 

low level programs directly. 

 

Instructions in the low level language are implemented as a series of functions 

accessible as an array of function pointers, indexed by a VM_INSTRUCTION_OPERATION 

value (the instruction operation enumeration type stored within Instruction). 

 

Every instruction step, the virtual machine considers the instruction at the position of 

the program counter and executes the associated implementation function for that 

operation. Each instruction records the values considered and produced during 

execution in an instance of VirtualMachineInstructionExecutionRecord and appends 

this to a shared VirtualMachineExecutionLog. The values of all registers before and 

after the instruction execution are also recorded. 

 

The execution loop terminates on the following conditions: 

 

• The end of the instruction string is encountered. This is considered a safe 

termination. 

• Division by zero. This is considered an unsafe termination. (This is not 

possible with the low level instructions specified in this dissertation as 

protected division is used.) 

• The maximum limit of instruction executions is reached. This is considered an 

unsafe termination. 

• A terminate instruction is encountered. (There are no terminate instructions 

currently used in these experiments.) 

If one of these conditions is met, the execution loop returns. The error state value is 

available to the calling function for analysis. 
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5.12 Implementation of Recombination Operations 

There are three recombination operations available to the LGP system: crossover, 

mutation and reproduction. One of these operations is selected as random during the 

recombination stage of the LGP system according to the rates supplied by the user in 

the parameter file. The number of child programs produced depends on the type of 

recombination selected: mutation and reproduction create a single child program, 

crossover creates two child programs. 

 

Instructions are copied individually within these operations instead of via a memory 

block copy as the instructions may contain complex elements, such as instances of 

classes, which cannot be copied in this manner (currently, this depends on the chosen 

base type of BigInteger). 

 

The crossover operation creates two new GeneticLinearProgram instances 

simultaneously by performing the crossover operation on the two selected parent 

GeneticLinearProgram instances. In this system, both products of crossover are 

retained. 

 

Transition points are randomly placed within the two instruction strings. Then, new 

InstructionStrings are constructed by copying instructions from the first string until 

the first transition point, then copying instructions from the second string starting at 

the first transition point until the second transition point, then copying the remaining 

instructions from the first string starting from the second transition point until the 

end. 

 

As the parent programs and transition points are chosen at random, the resulting 

programs can be of any length. To prevent the explosive growth of instructions in the 

population, there is a limit to the length of programs which may be produced as a 

result of crossover. This limit is specified in the parameter file. If, after selection, 

crossover would result in a program that violates this limit, the crossover is aborted 

and the transition points are re-chosen until a valid combination is selected. 

 

The mutation operation first produces an exact copy of the selected parent 

GeneticLinearProgram, then selects a random instruction from the InstructionString 

of this new program. Then one component of the instruction is chosen at random 

from the available components (as described in the instruction set listing previously). 

If an operand component is chosen, it is replaced with an operand of compatible type, 

chosen at random, while observing the restrictions imposed by the symbol table: a 

variable that is read only cannot be the subject of a STOR instruction. If the operation 

component is chosen, then the all components of the instruction are reinitialised as if 

the Instruction were recreated from scratch. 
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The reproduction operation creates a new instance of GeneticLinearProgram and 

inserts a copy of the InstructionString component of the selected parent 

GeneticLinearProgram. 

 

After the child programs have been created through the application of one of these 

operations, an equal number of existing programs are selected by tournament 

selection for removal based on their unfitness. 

 

5.13 Tournament Selection 

Tournament selection is used to select programs from the candidate solution 

population for application to the available genetic recombination operations and the 

elimination operation. 

 

In tournament selection, a set number of programs are randomly selected from the 

population to participate in the tournament. From these programs, a number of 

programs, equal to the number of required parent programs for the operation, with the 

highest fitness values are passed to the genetic recombination operation. 

 

The population model used in this system is a steady state model where the number 

of candidate programs in the population will remain constant throughout. For each 

new program produced by a genetic operation, a tournament is used to choose a 

random program with low fitness (i.e. a tournament is held, selecting the lowest 

fitness from the participants) to be removed from the population. 

 

The sizes of the tournaments used in selection for each of the recombination 

operation and elimination are specified separately in the parameter file. 

 

In this implementation, the population is stored in memory as an array of pointers to 

GeneticLinearProgram instances. During the elimination selection stage, pointers to 

the positions in this array are obtained. The indices into this array of the programs 

participating in the tournament can be found by randomly selecting the required 

number of random numbers from 0 to population_size - 1. The IndexSeries 

functions are designed for this purpose. When the program occupying a slot in this 

array of pointers is destroyed, the new programs created through the recombination 

operation take their place.  

 

5.14 Experiment Models 

There are number of different experiment evolutionary models available to the user in 

this implementation: ‘standard’, ‘standard with refine’, ‘incremental’ and 

‘incremental with refine’. Depending on the required measurement, the use of niche 

pre-emption will differ also. Each of these methods wraps the base implementation of 

LGP as described previously in a different way. 
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For experiments measuring computational effort, we are measuring how many low 

level language instructions must be evaluated in a typical run before a solution is 

found. To do this, we examine the capability of the system to evolve an acceptable 

candidate solution within a single run, and how many instruction evaluations it takes 

to achieve this. We use a single run of the experiment with a limited number of 

candidate program recreations. If the LGP system successfully produces an 

acceptable solution within the limited number of recreations, the number of 

instruction evaluations that was necessary is recorded. If the LGP exhausted the 

number of candidate program recreations without finding a solution, a ‘high’ value is 

recorded, signifying that the number of evaluations necessary is beyond the range we 

consider in this experiment. 

 

For experiments measuring program length, we are measuring the length of an 

acceptable solution program returned by the system, given that the system has been 

given sufficient resources to do so. To do this, we allow the system to use a large 

number of independent runs and a large number of candidate program recreations. 

The use of a large number of independent runs allows the system to reattempt the 

problem with a number of different initial populations until a solution is found. When 

the LGP successfully produces an acceptable solution, the length of this solution in 

low level language instructions is recorded.  

 

For experiments using the ‘standard’ evolution model, the input IR is exposed to the 

base EvolutionSystem_EvolveInstructionStringFromParseTree() function directly, 

and the appropriate results recorded. The implementation of experiments using the 

‘incremental’ model is discussed in the following section. 

 

After an acceptable solution has been found during the primary evolution phase, this 

solution may be re-inserted into the LGP system to attempt to improve the quality of 

the solution. This is the ‘refinement’ stage. For experiments which include the 

refinement stage, after each complete acceptable low level language translation of the 

input IR is evolved, this solution is then reintroduced to the LGP system for a second 

time using the same input IR. For this second stage of evolution, a set proportion of 

the initial population is initialised as copies of the previously obtained solution. The 

value of this proportion is defined in the parameters file. In this second phase, the 

parameters from the second parameters file are used. The remainder of the population 

is initialised as a ramp as before. The experiment is terminated upon reaching a 

maximum number of candidate solution recreations. The length of the best-of-run 

candidate solution in instructions is returned as the result. There is no attempt to 

determine if the optimal solution has been reached. 

 

The measurement of computational effort in combination with the refinement stage is 

not considered in this dissertation. 
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5.15 Implementation of Incremental Model 

In the incremental model, the parse tree component of the input IR is mechanically 

segmented into a number of smaller sub-programs. 

 

Each interior node of the parse tree is assigned a string name indicating the position 

of the node in the tree. The following figure shows the naming used for the example 

program discussed previously. 

 

 
 

Figure 5.5: Naming of interior nodes for sample program under incremental model 

 

Intermediate variables with these names are added to the symbol table as intermediate 

variables, and associated entries in the ParseTreeLeafNodeSetMember catalogue are 

generated. 

 

A depth-first traversal of the tree is performed and each interior is removed and 

replaced with a variable node of the same name. The detached subtree is then used to 

create a new program with an assignment node as its root and an instance of the 

interior node variable as the subject of the assignment. This results in a number of 

subprograms equal to the number of interior nodes each consisting of five nodes: the 

assignment, the interior node intermediate variable and the three nodes of the original 

subtree. 
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M001 = c + d 

      

Figure 5.6: Modified parse tree and detached program segment for sample program under 

incremental model 

 

The full decomposition of the input IR using this method results in the following 

subprograms: 

 

1: M001  = (c + d) 

2: M00   = (b = M001) 

3: M0110 = (b + e) 

4: M011  = (M0110 + 2) 

5: M01   = (a = M011) 

6: M0    = (M00; M01) 

 

The decompositions on lines 2 and 5 are possible because the assignment operator 

returns the value of its right hand side. Line 6 has no effect on the system whatsoever. 

 

Solutions for each of these subprograms are evolved as if by the standard model, 

using the parameters from the first parameters file, to produce a series of 

subsolutions. These subsolutions are then concatenated to produce the complete 

solution. 

 

The value of computational effort for an assembled solution program produced under 

the incremental model is the sum of the computational effort values for each of its 

component parts, as calculated by logarithms. 

 

The value of program length for an assembled solution program produced under the 

incremental model is the sum of the program lengths of the component parts. 
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6 Analysis of Results 
This section examines the results obtained from performing the experiments 

described in this dissertation and explores some of the traits apparent in the data. An 

aggregation of the results obtained from the experiment is given as an appendix. The 

full raw data logs are included on the accompanying CD-ROM. 

 

6.1 Overall 

The LGP system was capable of evolving appropriate low level language solution 

programs for all ten of the specified programs at least once. The system was able to 

automatically determine which instructions from the provided instruction set were of 

value, as shown by the evolution of optimal programs; in these programs, all 

unproductive instructions were removed by the recombination operations. 

 

6.2 Computational Effort 

Across all programs, for the ‘incremental’ method, the required computational effort 

appears to scale linearly with the number of parse tree nodes in the input program. 

Increasing the ‘depth’ of the calculation, considering programs B01 to B04, does not 

seem to have a pronounced additional effect on the computational effort. This may be 

because all of the program fragments are of the same shape, and of similar difficulty; 

commutative operators such as addition or multiplication would be easier to evolve 

than non-commutative operations such as subtraction, division or assignment due to 

there being fewer possible programs within the program space that have the desired 

effect. 

 

For the ‘standard’ method, required computational effort appears to scale 

exponentially with increasing calculation depth and increasing numbers of statements 

(semicolons). 

 

Program B04 has exceptionally high values for computational effort for both the 

‘standard’ and ‘incremental’ methods. Program B04 contains the greatest depth of 

calculation. The primary stumbling block appears to be the evolution of the division 

operation. The following graph shows the performance curves for the evolution of the 

various subprograms created when Program B04 is treated by the ‘incremental’ 

method. 
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Figure 6.1: Cumulative probability of evolution of each subprogram fragment for program 

B04 

 

Fragments 2 and 3 appear to be the easiest to evolve a solution for: they consist of a 

single commutative arithmetic operation followed by an assignment. Fragments 1 and 

5 appear to be the second easiest to solve; they consist of a single non-commutative 

operation followed by an assignment. Fragment 4 is the hardest fragment to solve, 

and contributes 1110000 of the 1595500 instructions of the EI value. This may be 

because the inclusion of the integer protected division operation in a program will 

often result in very small output values being produced due to the input values all 

lying within a small input range. Such programs may be difficult to improve using the 

genetic operations, as many of the possible operations will not have a noticeable 

productive effect. 

 

6.3 Program Length 

Where both the ‘standard’ and ‘incremental’ methods are able to evolve a solution 

program within a reasonable amount of time, it appears that the solution produced by 

the ‘standard’ method will be of shorter length by approximately 30% - 60%. 

 

When refinement is applied, the evolutionary system is able to reduce the mean 

solution program length by 60% - 80% for programs produced by the ‘standard’ 

method, and approximately 20% for programs produced by the ‘incremental’ method. 

 

For all programs except B04 and D03, ‘standard’ with the refinement operation was 

able to produce at least one solution that is ‘perfect’ given the available instructions. 
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For program D03, ‘standard’ with the refinement operation was able to produce at 

least one solution that was better than the unoptimised tree walking algorithm. 

 

For programs A01, A02, B01 and D01, ‘incremental’ with the refinement operation 

was able to produce at least one solution that is ‘perfect’ given the available 

instructions. For all other programs, the minimum solution program length was 

greater than that of the unoptimised tree walking algorithm. These long programs 

may be the result of the evolutionary system being unable to remove intermediate 

variables introduced during the fragmentation process. 

 

From these results, it appears that the ‘standard’ method is capable of producing 

optimal programs in many circumstances, but only if significant amounts of 

processor time are dedicated to the problem. If ‘any solution’ is acceptable, then the 

‘incremental’ method is capable of producing such a program quickly and rapidly. 

For these programs, the tree walking compiler performs considerably faster and 

produces programs of near optimal quality. The only advantage that the ‘incremental’ 

method has over the tree walking algorithm is that the tree walking algorithm does 

not take into account the finite register file in the virtual machine; it may simply 

exhaust the register file and crash. 
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7 Evaluation of Project 
This section provides a reflection on the conduct of the project, and the applicability 

of the results and conclusions drawn from the data. This section concludes with a 

discussion of the limitations of the project due to its design and offers some insight 

into how the work may be extended or adapted in future. 

 

7.1 Evaluation of Experiment Conduct 

I have successfully implemented the program as described in the Design section of 

this document. The evolutionary system prototype software is capable of evolving 

low level instruction string programs that are semantically equivalent to short 

sequences of statements in the high level source code language. In some cases, the 

system is capable of evolving instruction strings of optimal quality given the 

instruction set. However, this process is time consuming and processor intensive due 

to the evaluation of many thousands of candidate programs against hundreds of 

fitness cases. No guarantee may be made that the process will succeed at all, due to 

the probabilistic nature of the Linear Genetic Programming system. 

 

The incremental approach described in the previous report has been implemented and 

shown to be superior to the standard approach in terms of processor requirements, but 

inferior when the lengths of the output programs are considered. 

 

Due to limited available processor time, the EI values for programs B03, B04 and 

D03 using the ‘standard’ method may be artificially high due to the extreme 

unlikelihood of finding solution programs. 

 

It was necessary to alter the method for calculating the distribution of solution 

program lengths for Programs B04, C01, D01, D02 and D03 due to the extreme 

unlikelihood of finding a solution program. It was decided to perform 20 refinements 

on each solution program rather than 5 as normal. This was chosen as a reasonable 

compromise to dedicating significant time to finding multiple unrefined programs, as 

it is the distribution of program lengths after refinement that is under examination, so 

additional refinements of the same raw program will suffice, given that the raw 

program was produced in the correct manner. 
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8 Professional Issues 
This section examines the conduct of this dissertation in the context of the British 

Computer Society Code of Conduct and Code of Good Practice. 

 

8.1 British Computer Society Code of Conduct 

The British Computer Society Code of Conduct ‘sets out the professional standards 

required by BCS as a condition of membership’ (BCS, 2006). This section discusses 

how the Code of Conduct has been observed during the preparation of this 

dissertation. 

 

The Public Interest 

‘In your professional role you shall have regard for the public health, safety and 

environment.’ 

 

Throughout the preparation of this dissertation, I have conducted myself in a manner 

observing this requirement. I have used all necessary electronic equipment in the 

proper manner and according to their safety guidelines, and have taken the 

appropriate measures to safeguard my own health while using the equipment. 

 

‘You shall have regard to the legitimate rights of third parties.’ 

 

I have conducted myself in the proper manner with regards to the guideline document 

Plagiarism, Collusion and the Fabrication of Data: Guidelines for Staff and Students 

(UoL, a) produced by the University. As directed by Part B of these guidelines, I 

have done the following: 

 

• Where I have referenced the work or concepts of others, I have correctly 

identified all sources and included all relevant bibliographic information in 

the Bibliography section of this dissertation. 

• I have not represented another’s work or concepts as my own. 

• I have not allowed any student access to my work at any time. 

• I have not attempted to assist any other student in any way. 

 

‘You shall ensure that within your professional field/s you have knowledge and 

understand of relevant legislation, regulations and standards, and that you comply 

with such requirements’ 

 

I have familiarised myself with all legislation relevant to my work. Where I have 

requested documents, software or data from outside the University, I have observed 

the relevant regulations with respect to the import or export of technology. 

 

‘You shall conduct your professional activities without discrimination against clients 

or colleagues.’ 



 79

 

Throughout the preparation of this dissertation, I have conducted myself in a 

professional manner when dealing with University staff. 

 

‘You shall reject and shall not make any offer of bribery or inducement.’ 

 

I have not made any offer of bribery or inducement. 

 

Duty to Relevant Authority 

‘You shall carry out work or study with due care and diligence in accordance with 

the relevant authority’s requirements, and the interests of system users. If your 

professional judgment is overruled, you shall indicate the likely risks and 

consequences.’ 

 

Throughout the preparation of this dissertation, I have conducted myself in a manner 

observing the requirements set forth by the University’s codes of conduct. 

 

‘You shall avoid any situation that may give rise to a conflict of interest between you 

and your relevant authority. You shall make full and immediate disclosure to them if 

any conflict is likely to occur or be seen by a third party as likely to occur. You shall 

endeavour to complete work undertaken on time to budget and shall advise the 

relevant authority and soon as practicable if any overrun is foreseen.’ 

 

At the time of preparation of this dissertation, my only active professional affiliation 

is that to the University of Liverpool. I have not allowed any situation to develop 

which may be construed as forming a conflict of interest. 

 

At the outset of the preparation of this dissertation, a schedule of work was agreed 

with my primary supervisor. I have been in contact with my supervisors at the 

University on a regular basis, and during these meetings have reported the progress of 

my work. As required by the COMP702 guidelines (UoL, b), I have submitted 

regular written progress reports to the University detailing the work undertaken to 

date. This dissertation will be submitted before the required deadline given by the 

University. 

 

‘You shall not disclose or authorise to be disclosed, or use for personal gain or to 

benefit a third party, confidential information except with the permission of your 

relevant authority, or at the direction of a court of law.’ 

 

No information of a personal or confidential nature was handled at any point during 

the preparation of this dissertation. 
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‘You shall not misrepresent or withhold information on the performance of products, 

systems or services, or take advantage of the lack of relevant knowledge or 

inexperience of others.’ 

 

I have not misrepresented or withheld any information on the performance of the 

system described in this dissertation. The complete software used to generate the 

results detailed in this dissertation is included in full on the accompanying CD-ROM 

in both compiled executable binary and human-readable source code forms. This 

software may be used to repeat the experiments described in this dissertation. 

 

‘You shall uphold the reputation and good standing of the BCS in particular, and the 

profession in general, and shall seek to improve professional standards through 

participation in their development, use and enforcement.’ 

 

Throughout the preparation of this dissertation, I have conducted myself in a 

professional manner, and in full compliance of all relevant guidelines, standards and 

codes of conduct. 

 

‘You shall act with integrity in your relationships with all members of the BCS and 

with members of other professions which whom you work in a professional capacity.’ 

 

Throughout the preparation of this dissertation, I have conducted myself in a 

professional manner when dealing with University staff. 

 

‘You shall have due regard for the possible consequences of your statement on 

others. You shall not make any public statement in your professional capacity unless 

you are properly qualified and, where appropriate, authorised to do so. You shall not 

purport to represent the BCS unless authorised to do so.’ 

 

I have not made any public statement during the preparation of this dissertation. 

Insofar as the dissemination of this dissertation is considered as a statement in my 

capacity as a postgraduate student, I have conducted my studies in a professional 

manner and with integrity. 

 

‘You shall notify the Society if convicted of a criminal offence or upon becoming 

bankrupt or disqualified as Company Director.’ 

 

This section is not applicable in this instance. 

 

Professional Competence and Integrity 

‘You shall seek to upgrade your professional knowledge and skill, and shall maintain 

awareness of technological developments, procedures and standard which are 

relevant to your field, and encourage your subordinates to do likewise.’ 
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The preparation and execution of this dissertation is the result of my intent to upgrade 

my professional knowledge and skill in the field of Computer Science. In preparing 

this dissertation, I have performed a significant amount of research into the 

technological developments surrounding the subjects studied in this dissertation. 

  

‘You shall not claim any level of competence that you do not possess. You shall only 

offer to do work or provide a service that is within my professional competence.’ 

 

The undertaking of research, development of computer software, and analysis of 

results necessary for the preparation of this dissertation are within my level of 

competence. 

 

‘In addition to this Code of Conduct, you shall observe whatever clauses you regard 

as relevant from the BCS Code of Good Practice and any other relevant standards, 

and you shall encourage your colleagues to do likewise.’ 

 

Throughout the preparation of this dissertation, I have conducted myself in a 

professional manner, and in full compliance of all relevant guidelines, standards and 

codes of conduct. A discussion regarding how the preparation of this dissertation has 

observed the BCS Code of Good Practice appears in the following section. 

  

‘You shall accept professional responsibility for your work and for the work of 

colleagues who are defined in a given context as working under your supervision.’ 

 

I accept professional responsibility for my work, and have made relevant declarations 

to the University regarding plagiarism and academic conduct to this effect. No 

colleagues have worked under supervision at any point during the preparation of this 

dissertation. 

 

8.2 British Computer Society Code of Good Practice 

The British Computer Society Code of Good Practice ‘describes standards of practice 

relating to the contemporary multifaceted demands found in IT’ (BCS, 2004). This 

section discusses how the Code of Good Practice has been observed during the 

preparation of this dissertation. Only those subsections deemed relevant to the 

preparation of this dissertation and my role as a student are included in this section. 

There is some overlap between this section and the previous section; sections which 

exactly duplicate language from the Code of Conduct are not considered. 

 

Practices Common to all Disciplines 

Maintain Your Technical Competence 

Throughout the preparation of this dissertation, I have sought to improve my IT skills 

in the areas of software development and document preparation through the use of 

online resources and other resources provided by the University of Liverpool. In 
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performing the research stages of this dissertation, I have myself aware of all relevant 

technological advances in the fields of software development and the development 

and use of evolutionary computation metaheuristic algorithms. 

 

I have sought to obtain an appropriate qualification as a result of the submission of 

this dissertation; this dissertation has been submitted in partial fulfilment of the 

requirements of the degree of Master of Science at the University of Liverpool for the 

degree entitled Advanced Computer Science. 

 

Adhere to Regulations 

Throughout the preparation of this dissertation, I have conducted myself in a 

professional manner, and in full compliance of all relevant guidelines, standards and 

codes of conduct. I have performed and presented the research described in this 

dissertation according to the commonly observed conventions of academic research, 

such as the full description of all experiments performed and the collation of a 

bibliography detailing all references consulted. 

 

Use Appropriate Methods and Tools 

The software has been written using the C++ language, a language highly appropriate 

for the development of applications manipulating the processing of large amounts of 

data at a rapid rate, as required for the function of a genetic evolutionary computation 

system. The purpose of this dissertation is to explore the applicability of the Linear 

Genetic Programming evolutionary computation model for the task of performing 

code generation in a general-purpose software compiler; little prior information exists 

on this subject, to my knowledge. 

 

Practices Specific to Education and Research Functions 

When Performing Research 

This dissertation has been prepared in accordance with academic convention, as 

mentioned previously. The purpose and consequences of this research have been fully 

explored; the research performed as part of this dissertation may lead toward the 

development of enhanced software compilers in the future. This, in turn, would allow 

for expedited development of new software at a lower cost. 

 

It is my intention that this dissertation be made freely available to all interested 

parties after the conclusion of all University assessment procedures. 

 

Practices Specific to Business Functions 

When Conducting Systems and Business Analysis 

This dissertation has been targeted toward the reader with some knowledge of the 

terms and techniques used within the field of Computer Science and has been worded 

as such. The dissertation contains a full description of the techniques used; the source 
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code is included on the associated CD-ROM. The technical constraints of the 

software produced have been fully explored and detailed.  

 

When Designing Software / When Programming 

The software produced as part of this dissertation is of high quality, extensible, well-

documented and modular in nature. Coding conventions, such as the consistent 

naming of variables and functions, and the use of indentation are used throughout the 

source code.  

 

The software does not contain any platform specific code limiting its use to any one 

operating system. The programming language used throughout the project, C++, is 

available for use on almost all platforms. 

 

When Writing Technical / User Documentation 

The design and use of the software is described extensively in this dissertation. 

Comments are used throughout the source code. A full function and data type 

reference is included as an appendix. 
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9 Conclusion 
9.1 Conclusions 

In this dissertation, we have formulated, specified, implemented and evaluated 

several new models for using Linear Genetic Programming (LGP) to transform an 

input program written in a high level language into the most optimal machine code 

form given the available functionality of the target architecture. The LGP system has 

been shown to implicitly perform the tasks of instruction selection and register 

allocation as would be performed by a non-evolution code generator. 

 

It is believed that the system described in this dissertation is capable of automatically 

assimilating additional instructions provided to it and automatically applying them in 

its determination of low level output programs without being guided as to their best 

use by a human programmer. The system is guided by a graduated fitness function 

which has been shown to be sufficiently general to be directly reused between 

programs without configuration by a human programmer. 

 

The refinement stage has shown the most promise of the two stages examined in this 

dissertation. The experiments described previously have shown that LGP has the 

capability of reducing complex programs written in a low level assembly-like 

language to simpler programs automatically without the loss of semantic information. 

In some cases, the system has shown the capability of producing what is believed to 

be the most optimal form of a given program. 

 

9.2 Summary of Contributions 

This dissertation has demonstrated the first attempted use of LGP, to my knowledge, 

to perform the task of performing the translation from an input IR to low level 

assembly-like code through the formulation of a single fitness function applicable to 

all cases. 

 

9.3 Limitations of Project and Further Work 

The experiments undertaken as part of this project have all used the same set of 

evolutionary system parameters. A more complete analysis of the problem would 

consider the effects of altering the various parameters to the evolutionary system, 

such as the maximum number of new creations, the maximum length of a candidate 

program produced through crossover, the maximum number of new creations 

available to the refinement stage and the fraction of raw solution copies in the genetic 

population during the refinement stage. 

 

The input programs considered by this project have been simple lists of statements 

with no control structures. Additional programs may be investigated containing IF 

statements, WHILE and FOR loops, and other constructs manipulating program flow. 

In order to investigate these, the low level instruction set must be extended by 

providing the means for non linear control flow. This may include call-and-return 
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instruction pairs for the automatic development of subroutines, or compare-and-jump 

instructions for conditional control flow similar to those found in a RISC architecture 

such as ARM. To test the ability of the system to automatically assimilate new 

instructions, it is suggested to repeat the experiments with additional instructions, 

such as combined arithmetic instructions, and observe how the system responds. 

 

The memory model used in this project is a simple symbolic associative memory. It is 

possible to extend the work attempted in this project to low level machines with 

indexed memory. Alternatively, the virtual machine definition can be extended by 

introducing the concept of a stack. The methods by which the evolutionary system 

attempts to use the stack can then be investigated. 

 

Alternatively, methods other than evolutionary computation could be used to provide 

a more controllable approach to attempting code generation, while still retaining 

desirable qualities such the ability to automatically and autonomously determine the 

most appropriate use of each instruction from the available set. 
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Appendix A Work Log 
May 4

th
 

Initial meeting with primary supervisor David Jackson to discuss available 

projects based on those described on the COMP702 web site.  

 

May 14
th

 

Second meeting with primary supervisor to discuss content of project. In this 

meeting, the subject of the dissertation and the scope of the project was 

finalised.  

 

May 14
th

 onwards 

Development of original prototypes of genetic system. These prototypes use 

a different structure for the candidate solutions than the one used in this 

dissertation. In this software, instructions may be divisible. This was found 

to be an unproductive method, and was abandoned.  

 

June 29
th

 

Meeting with supervisor to discuss progress so far; experimental 

methodologies finalised.  

 

July 1
st
 

Presentation of research undertaken so far presented to Ph. D selection 

committee: scope of research, software produced, experimental 

methodologies and hypotheses.  

 

July 2
nd

 

Submission of ‘Specification Document’: details of research to be 

undertaken, examination of program to be researched and initial design of 

software.  

 

July 15
th

 

Meeting with supervisor to discuss progress so far, implementation and 

acceleration of evaluation of fitness function. 

 

August 1
st
 onwards 

Design and implementation of the experimental testbed used to generate the 

results. 

 

August 4
th

 

Submission of ‘Design Report’: details of research undertaken, problem to 

be solved, experimental methodology, software design and changes to 

software from initial specification document.  
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August 6
th

 

Design presentation to primary and secondary assessor: summary of 

experimental methodology and software design, elaboration of research 

undertaken and hypotheses produced.  

 

August 10
th

 

First experiments using LGP-based system are performed. 

 

September 6
th

 

Submission of ‘Final Presentation Report’: details of software design and 

implementation, primary analysis of results and preliminary conclusions. 

 

September 9
th

 

Final presentation to primary and secondary assessor: summary and 

discussion of results; software demonstration. 

 

September 16
th

 

Final meeting with secondary supervisor to discuss final content of 

dissertation. 

 

September 24
th

 

Submission of Dissertation 
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Appendix B Structure of Accompanying CD-ROM 
/readme.txt 

Guide to the files stored on CD-ROM. (This listing)  

 

/Documents/1ProjectSpecification.doc 

/Documents/1ProjectSpecification.pdf 

Project Specification document submitted July 2nd.  

 

/Documents/2DesignDocument.doc 

/Documents/2DesignDocument.pdf 

Design Document submitted August 4th.  

 

/Documents/3DesignPresentation.ppt 

/Documents/3DesignPresentation.pdf 

Design Presentation presented August 6th.  

 

/Documents/4FinalPresentationReport.doc 

/Documents/4FinalPresentationReport.pdf 

Final Presentation Report submitted September 6th.  

 

/Documents/5FinalPresentation.ppt 

/Documents/5FinalPresentation.pdf 

Final Presentation Report submitted September 9th.  

 

/Documents/6Dissertation.doc 

/Documents/6Dissertation.pdf 

Dissertation to be submitted September 24th.  

 

/Software/Sourcecode/ 

Contains full source code for software described in this dissertation. Includes 

layout and environment files for use with Code::Blocks C++ IDE.  

 

/Software/Executable/ 

Contains executable software (for Windows XP), and all files used in the 

experiments described in this dissertation.  

 

evolve.exe 

Executable software (for Windows XP).  

 

program_---.txt 

Plain text input file for programs considered in this dissertation.  

 

perform_standard.bat 
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Batch file performing all experiments considering the ‘standard’ model of 

applying LGP.  

 

perform_standard_for_computational_effort.bat 

Batch file performing all experiments for computational effort considering 

the ‘standard’ model.  

 

perform_standard_for_program_length.bat 

Batch file performing all experiments for program length (no refinement) 

considering the ‘standard’ model.  

 

perform_standard_for_program_length_refinement.bat 

Batch file performing all experiments for program length (with refinement) 

considering the ‘standard’ model. This batch file should be run to perform 

all standard program length experiments as it performs 200 standard 

evolution attempts, and 5 refinement attempts on each of these.  

 

perform_incremental.bat 

Batch file performing all experiments considering the ‘incremental’ model 

of applying LGP.  

 

perform_incremental_for_computational_effort.bat 

Batch file performing all experiments for computational effort considering 

the ‘incremental’ model.  

 

perform_incremental_for_program_length.bat 

Batch file performing all experiments for program length (no refinement) 

considering the ‘incremental’ model.  

 

perform_incremental_for_program_length_refinement.bat 

Batch file performing all experiments for program length (with refinement) 

considering the ‘incremental’ model. This batch file should be run to 

perform all incremental program length experiments as it performs 200 

complete incremental evolution attempts, and 5 refinement attempts on each 

of these.  

 

tree_walking_compiler.bat 

Batch file performing all experiments for program length when using the 

tree walking compiler.  

 

tree_walking_compiler_with_refine.bat 

Batch file performing all experiments for program length with refinement 

when using the tree walking compiler. 

 

parameters_attempt_standard_for_computational_effort.txt 



 97

Parameter file containing the parameters for performing the standard 

evolution experiments for computational effort.  

 

parameters_attempt_standard_for_program_length.txt 

Parameter file containing the parameters for performing the standard 

evolution experiments for program length.  

 

parameters_attempt_incremental_for_computational_effort.txt 

Parameter file containing the parameters for performing the incremental 

evolution experiments for computational effort.  

 

parameters_attempt_incremental_for_program_length.txt 

Parameter file containing the parameters for performing the incremental 

evolution experiments for program length.  

 

parameters_attempt_refinement.txt 

Parameter file containing the parameters for performing the refinement 

stage.  

 

parameters_attempt_refinement_200.txt 

Parameter file containing the parameters for performing the refinement stage 

with 200 refinements for each found candidate solution.  

 

/Data/RawData/ 

Contains all output files produced as a result of performing experiments. 

Files are labelled according to the experiment used to generate them and the 

input program they are associated with.  

 

/Data/Analyses/ 

Contains Microsoft Excel 2000 .xls files analysing the results obtained as a 

result of the experiment. Analyses of computational effort values are 

accompanied by performance curves. Analyses of program length 

distributions are accompanied by histograms showing the relative frequency 

distribution of program lengths before and after the refinement stage. 
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Appendix C Specification of Input Programs 
The following ten input programs are specified. These can be reproduced by 

executing the software using the following command-line arguments within a 

command prompt window and monitoring the console output. 

 
evolve program_a01.txt tree_walking_compiler empty.txt empty.txt 

           tree_walking_compiler_for_program_length_program_a01.txt 

 

Program A01: 

Assignment of a single constant to a 

variable 

 
a = 3 

 

Output: a 

Symbolic Constant: 3 

 

Number of nodes: 3 

Number of interior nodes: 1 

 

 

 

Tree walking compiler output: 

 

LOADS  0,  3 

STORS  0,  a 

 

Length: 2 

Optimal solution program: 

 

LOADS  0,  3 

STORS  0,  a 

 

Length: 2  
 

Program A02: 

Assignment of two constants to two 

variables 

 

a = 234; 

b = 1056  

 

Output: a, b 

Symbolic Constant: 234, 1056 

 

Number of nodes: 7 

Number of interior nodes: 3 

 

 

 

Tree walking compiler output: 

 

LOADS  0,  234 

STORS  0,  a 

LOADS  0,  1056 

STORS  0,  b 

 

Length: 4 

Optimal solution program: 

 

LOADS  0,  234 

STORS  0,  a 

LOADS  0,  1056 

STORS  0,  b 

 

Length: 4  
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Program B01: 

Simple calculation; two input variables 

one output variable 

 

a = b + c 

 

Input: b, c 

Output: a 

 

Number of nodes: 5 

Number of interior nodes: 2 
 

 

Tree walking compiler output: 

  

LOADS  0,  b 

LOADS  1,  c 

ADD    0,   0,   1 

STORS  0,  a 

 

Length: 4 

Optimal solution program: 

 

LOADS  0,  b 

LOADS  1,  c 

ADD    0,   0,   1 

STORS  0,  a 

 

Length: 4  
 

Program B02: 

Progressively more complex calculation 

 

a = b – (c + d) 

 

Input: b, c, d 

Output: a 

 

Number of nodes: 7 

Number of interior nodes: 3  
 

Tree walking compiler output: 

  

LOADS  0,  b  

LOADS  1,  c  

LOADS  2,  d  

ADD    1,   1,   2  

SUB    0,   0,   1 

STORS  0,  a 

 

Length: 6 

Optimal solution program: 

 

LOADS  0,  b  

LOADS  1,  c  

LOADS  2,  d  

ADD    1,   1,   2  

SUB    0,   0,   1 

STORS  0,  a 

 

Length: 6  
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Program B03: 

Complex calculation involving a constant 

 

a = (18 * (c – d)) + b 

 

Input: b, c, d 

Output: a 

Constant: 18 

 

Number of nodes: 9 

Number of interior nodes: 4 

 
 

Tree walking compiler output: 

  

LOADS  0,  18  

LOADS  1,  c  

LOADS  2,  d  

SUB    1,   1,   2 

MUL    0,   0,   1  

LOADS  1,  b  

ADD    0,   0,   1 

STORS  0,  a 

 

Length: 8 

Optimal solution program: 

 

LOADS  0,  18  

LOADS  1,  c  

LOADS  2,  d  

SUB    1,   1,   2 

MUL    0,   0,   1  

LOADS  1,  b  

ADD    0,   0,   1 

STORS  0,  a 

 

Length: 8  
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Program B04: 

Complex calculation with division 

 

a = ((c – 90) * (b + d)) / e 

 

Input: b, c, d, e 

Output: a 

Constant: 90 

 

Number of nodes: 11 

Number of interior nodes: 5 

 
 

Tree walking compiler output: 

  

LOADS  0,  c  

LOADS  1,  90  

SUB    0,   0,   1  

LOADS  1,  b  

LOADS  2,  d 

ADD    1,   1,   2 

MUL    0,   0,   1  

LOADS  1,  e  

DIVP   0,   0,   1 

STORS  0,  a 

 

Length: 10 

Optimal solution program: 

 

LOADS  0,  c  

LOADS  1,  90  

SUB    0,   0,   1  

LOADS  1,  b  

LOADS  2,  d 

ADD    1,   1,   2 

MUL    0,   0,   1  

LOADS  1,  e  

DIVP   0,   0,   1 

STORS  0,  a 

 

Length: 10  
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Program C01: 

Calculation involving intermediate 

variable 

 

b = c + d; 

a = b * e 

 

Input: c, d, e 

Output: a 

Intermediate: b 

 

Number of nodes: 11 

Number of interior nodes: 5 

 
 

 

Tree walking compiler output: 

  

LOADS  0,  c  

LOADS  1,  d 

ADD    0,   0,   1 

STORS  0,  b 

LOADS  0,  b 

LOADS  1,  e 

MUL    0,   0,  1 

STORS  0,  a 

 

Length: 9 

Optimal solution program: 

 

LOADS  0,  c  

LOADS  1,  d 

ADD    0,   0,   1 

LOADS  1,  e 

MUL    0,   0,  1  

STORS  0,  a 

 

Length: 7 
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Program D01: 

Calculation involving intermediate 

variables; optimisations possible 

(a = 2*b) 

 

d = b + c; 

e = b – c; 

a = d + e 

Input: b, c 

Output: a 

Intermediate: d, e 

 

Number of nodes: 17 

Number of interior nodes: 8 

 

 
 

Tree walking compiler output: 

  

LOADS  0,  b  

LOADS  1,  c 

ADD    0,   0,   1 

STORS  0,  d  

 

LOADS  0,  b 

LOADS  1,  c 

SUB    0,   0,   1  

STORS  0,  e  

 

LOADS  0,  d 

LOADS  1,  e 

ADD    0,   0,   1  

STORS  0,  a 

 

Length: 12 

Optimal solution program: 

 

LOADS  0,  b 

ADD    0,  0,  0 

STORS  0,  a 

 

Length: 3 
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Program D02: 

Calculation involving intermediate 

variables; difference of two squares 

(a = b*b – c*c) 

 

d = b + c; 

e = b – c; 

a = d * e 

 

Input: b, c 

Output: a 

Intermediate: d, e 

 

Number of nodes: 17 

Number of interior nodes: 8 

 

 
 

Tree walking compiler output: 

  

LOADS  0,  b  

LOADS  1,  c 

ADD    0,   0,   1 

STORS  0,  d  

 

LOADS  0,  b 

LOADS  1,  c 

SUB    0,   0,   1  

STORS  0,  e  

 

LOADS  0,  d 

LOADS  1,  e 

MUL    0,   0,   1  

STORS  0,  a 

 

Length: 12 

Optimal solution program: 

 

LOADS  0,  b 

MUL    0,   0,   0  

LOADS  1,  c 

MUL    1,   1,   1 

SUB    0,   0,   1 

STORS  0,  a 

 

Length: 6 
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Program D03: 

Complex calculation involving 

intermediate variables 

 

i1 = ((b + c) – d); 

i2 = ((b – c) + d); 

a = i1 * i2 

 

Input: b, c, d 

Output: a 

Intermediate: i1, i2 

 

Number of nodes: 21 

Number of interior nodes: 10 

 
 

Tree walking compiler output: 

  

LOADS  0,  b  

LOADS  1,  c 

ADD    0,   0,   1 

LOADS  1,  d  

SUB    0,   0,   1 

STORS  0,  i1  

 

LOADS  0,  b  

LOADS  1,  c  

SUB    0,   0,   1  

LOADS  1,  d  

ADD    0,   0,   1  

STORS  0,  i2  

 

LOADS  0,  i1  

LOADS  1,  i1  

MUL    0,   0,   1  

STORS  0,  a 

 

Length: 16 

Optimal solution program: 

 

LOADS  0,  c 

LOADS  1,  d 

SUB    0,   0,   1 

MUL    0,   0,   0 

LOADS  1,  a 

MUL    1,   1,   1 

SUB    0,   1,   0 

STORS  0,  a 

 

Length: 8 
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Appendix C Summary of Data 
The full raw output of the evolve.exe program can be found on the accompanying 

CD-ROM in the directory RAW_DATA, together with the files used to collate this 

data in its aggregate form. 

 

C.1 Aggregated Result Data – Computational Effort 

Computational effort EI values: 

 

 ‘Standard’ ‘Incremental’ No. internal nodes No. nodes 

PROGRAM A01 52000 180000 1 3 

PROGRAM A02 432000 359000 3 7 

PROGRAM B01 203000 250500 2 5 

PROGRAM B02 1616000 404500 3 7 

PROGRAM B03 16590000 454500 4 9 

PROGRAM B04 ------------ 1595500 5 11 

PROGRAM C01 1816000 538000 5 11 

PROGRAM D01 450000 787000 8 17 

PROGRAM D02 4842000 845500 8 17 

PROGRAM D03 619406000 1031000 10 21 

 

The ‘standard’ value for Program B04 was incalculable due to exceptionally low 

probability of success for any number of instruction considerations. 

 

C.2 Aggregated Result Data – Program Length 

Distribution of solution program lengths: 

 

PROGRAM A01 Minimum Maximum Mean Median Mode 

‘Standard’ 3 95 22.42 21 6 

‘Incremental’ 3 44 15.235 15 16 

‘Standard with refinement’ 2 2 2 2 2 

‘Incremental with refinement’ 2 2 2 2 2 

 

PROGRAM A02 Minimum Maximum Mean Median Mode 

‘Standard’ 5 63 21.105 19 12 

‘Incremental’ 14 89 39.09 37.5 33 

‘Standard with refinement’ 4 60 6.218 4 4 

‘Incremental with refinement’ 4 9 4.008 4 4 

 

PROGRAM B01 Minimum Maximum Mean Median Mode 

‘Standard’ 4 46 14.09 13 11 

‘Incremental’ 11 39 22.375 22 19 

‘Standard with refinement’ 4 26 5.566 4 4 

‘Incremental with refinement’ 4 30 6.991 6 4 
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PROGRAM B02 Minimum Maximum Mean Median Mode 

‘Standard’ 9 46 21.545 21 17 

‘Incremental’ 17 60 33.305 33 35 

‘Standard with refinement’ 6 37 10.864 10 7 

‘Incremental with refinement’ 9 44 21.902 21 20 

 

 

PROGRAM B03 Minimum Maximum Mean Median Mode 

‘Standard’ 15 47 28.51 28 26 

‘Incremental’ 26 63 44.165 44 43 

‘Standard with refinement’ 8 37 15.069 14 12 

‘Incremental with refinement’ 15 56 35.436 35 37 

 

 

PROGRAM B04 Minimum Maximum Mean Median Mode 

‘Standard’ 29 62 41 38 38 

‘Incremental’ 36 85 56.65 56 60 

‘Standard with refinement’ 12 27 18.7 16.5 14 

‘Incremental with refinement’ 28 81 48.968 48 46 

 

Program B04 was only run for 5 independent runs (each with 20 refinement attempts) 

using the ‘standard’ (with refinement) model due to the unlikelihood of finding 200 

solution programs within a reasonable amount of time. 

 

 

 

PROGRAM C01 Minimum Maximum Mean Median Mode 

‘Standard’ 19 27 22.6 23 N/A 

‘Incremental’ 30 83 51.51 50 49 

‘Standard with refinement’ 6 21 9.27 7 6 

‘Incremental with refinement’ 10 68 34.654 34 32 

 

Program C01 was only run for 5 independent runs (each with 20 refinement attempts) 

using the ‘standard’ (with refinement) model due to time constraints. 

 

 

 

PROGRAM D01 Minimum Maximum Mean Median Mode 

‘Standard’ 17 30 21.2 19 N/A 

‘Incremental’ 54 119 82.84 82.5 78 

‘Standard with refinement’ 3 18 6.62 3 3 

‘Incremental with refinement’ 3 95 58.73 60 63 

 

Program D01 was only run for 5 independent runs (each with 20 refinement attempts) 

using the ‘standard’ (with refinement) model due to time constraints. 
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PROGRAM D02 Minimum Maximum Mean Median Mode 

‘Standard’ 20 32 27.6 30 32 

‘Incremental’ 54 111 81.91 80 79 

‘Standard with refinement’ 6 21 11.41 12 6 

‘Incremental with refinement’ 25 91 59.604 59 61 

 

Program D02 was only run for 5 independent runs (each with 20 refinement attempts) 

using the ‘standard’ (with refinement) model due to time constraints. 

 

 

ROGRAM D03 Minimum Maximum Mean Median Mode 

‘Standard’ 29 44 37.6 42 N/A 

‘Incremental’ 78 147 103.935 103 103 

‘Standard with refinement’ 10 39 21.93 22 14 

‘Incremental with refinement’ 54 129 83.68 83 79 

 

Program D03 was only run for 5 independent runs (each with 20 refinement attempts) 

using the ‘standard’ (with refinement) model due to time constraints. 

 

C.3 Non-Evolutionary Data – Program Length 

Solution program lengths in instructions when using non genetic methods: 

 

 Human Programmer 

(optimised) 

Tree Walking Compiler 

(unoptimised) 

PROGRAM A01 2 2 

PROGRAM A02 4 4 

PROGRAM B01 4 4 

PROGRAM B02 6 6 

PROGRAM B03 8 8 

PROGRAM B04 10 10 

PROGRAM C01 6 8 

PROGRAM D01 3 12 

PROGRAM D02 6 12 

PROGRAM D03 8 16 
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Appendix D User Guide to Software 
D.1 General 

The software requires the user to supply command-line arguments instructing it 

which type of experiment to perform, the location of the input program on which to 

perform code generation, and the location of the parameter files. 

 

The program has the following invocation syntax: 

 
evolve.exe [source_program_file] [analysis_type] [parameters_file]  

               [parameters_file2] [output_file] 

 

[source_program_file] is a string containing the location of the input program on the 

hard drive. Input programs are stored in a plain text format for easy modification by 

the user. 

 

[analysis_type] is a string indicating what form of experiment is to be performed. It 

can take one of the following values: 

 
 attempt_standard 

Perform evolution using the ‘standard’ model using the parameters in 

[parameters_file]. 

 
 attempt_standard_with_refine  

Perform evolution using the ‘standard’ model using the parameters in 

[parameters_file], followed by the refinement stage using the 

parameters in [parameters_file2].  

 
 attempt_incremental  

Perform evolution using the ‘incremental’ model using the 

parameters in [parameters_file]. 

 
 attempt_incremental_with_refine  

Perform evolution using the ‘incremental’ model using the 

parameters in [parameters_file], followed by the refinement stage 

using the parameters in [parameters_file2].  

 
 tree_walking_compiler  

Perform code generation of the input program using the tree walking 

algorithmic compiler, using the parameters in [parameters_file]. 

 
 tree_walking_compiler_with_refine  

Perform code generation of the input program using the tree walking 

algorithmic compiler, using the parameters in [parameters_file], 

followed by the refinement stage using the parameters in 

[parameters_file2]. 
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[parameters_file] is a string containing the location of the parameters file 

containing the parameters to use during the primary stage of evolution. 

[parameters_file2] is a string containing the location of the parameters file 

containing the parameters to use during the refinement stage of evolution. 

 

[output_file] is a string containing the location of the file to which the experiment 

results will be saved. If this file already exists, the results are appended to the end of 

the existing file. 

 

Example:  

 
evolve.exe program_a01.txt attempt_standard_with_refine  

             parameters_attempt_standard_for_program_length.txt  

             parameters_attempt_refinement.txt  

             attempt_standard_with_refine_for_program_length_program_a01.txt 

 

This example instructs the software to attempt to evolve a solution to the input 

program stored in the file program_a01.txt using the ‘standard’ model of evolution 

followed by the refinement stage. The parameters for the ‘standard’ phase of 

evolution are stored in the file parameters_attempt_standard_for_ 

program_length.txt and the parameters for the refinement stage are stored in the file 

parameters_attempt_refinement.txt. The output results are stored in the file 

attempt_standard_with_refine_for_program_length_program_a01.txt. 

 

D.2 Parameter Files 

A parameter file is a plain text file containing a list of values for parameters in the 

form <parameter> <value>. A parameter file may contain values for the following 

parameters.  

 

population_size <integer> 

Sets the population size used in the LGP system to <integer> programs. 

 
initial_maximum_program_size_in_instructions <integer> 

initial_minimum_program_size_in_instructions <integer> 

Sets the values of the depth ramp used to initialise the population. 

 

discard_crossover_programs_of_size_above <integer> 

Instructs the LGP system to reselect the transition points for the crossover operation 

if the size of the resulting program is over <integer>. To disable this functionality, 

set this value to a high value such as 1000000. 

 

max_creations_per_run <integer> 

Sets the maximum number of candidate program recreations allowed before the 

current run is aborted. 
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tournament_size_for_crossover <integer>  

tournament_size_for_reproduction <integer>  

tournament_size_for_mutation <integer>  

tournament_size_for_deletion <integer> 

Sets the sizes used in the tournaments for selection of programs for crossover, 

reproduction (exact duplication), mutation and deletion (removal of unfit programs). 

 

max_runs <integer> 

Sets the number of independent runs used as part of niche-preemption to ensure the 

eventual evolution of an acceptable candidate solution. 

 

repeat_experiment <integer> 

Sets the number of times that independent experiments will be performed. For 

evolution of new programs, this is the number of complete experiments to find a 

solution that will be attempted. For refinement evolution, this is the number of 

refinements that will be attempted for each acceptable solution previously found by 

other methods. 

 
rate_of_crossover <float>  

rate_of_mutation <float>  

rate_of_reproduction <float> 

Sets the rates of application of the crossover, mutation and reproduction 

recombination operations (as values between 0 and 1). 

 

fitness_case_training_set_count <integer> 

Sets the number of fitness cases used during training of the population. 

 

fitness_case_training_set_count <integer> 

Sets the number of additional fitness cases applied after a candidate solution has 

passed the training set to ensure that the candidate solution is sufficiently general. 

 
maximum_acceptable_fitness <float> 

Imposes an addition condition on the maximum acceptable fitness of a candidate 

solution. This is set to a high value for evolution of new programs to ensure that they 

terminate as soon as a candidate solution which passes the training set is found. For 

refinement evolution, this is set to a low value so that evolution will continue even 

though the population will already contain acceptable solution programs (the 

termination criterion then becomes exhaustion of available candidate recreations). 

 
instruction_executions_max_count <integer> 

Sets the maximum number of instructions that may be executed in the low level 

virtual machine before execution is forcefully terminated with a bad error state. 

 

vm_register_general_purpose_count <integer> 
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Sets the number of general purpose registers present in the register file of the low 

level architecture. May be up to 8. (This may be altered by changing the constant 

VM_REGISTER_COUNT and recompiling the software. 

 

adaptive_instruction_set <boolean> 

Enables a mode where the software is allowed to analyse the structure of the parse 

tree before evolution and adapt the instruction set available to the LGP system based 

on this knowledge. This mode is not used in the experiments described in this 

dissertation as it allows the system a priori information about relationships between 

the instruction set and the parse tree. 

 

adaptive_instruction_set <float> 

Sets the ratio 1/<float> of the adaptive addition to the instruction set. This mode is 

not used in the experiments described in this dissertation as it allows the system a 

priori information about relationships between the instruction set and the parse tree. 

 

reporting <boolean> 

If set to true, the software will output status reports to the console window at regular 

intervals.  

 

reporting_granularity_in_new_creations <integer> 

Where reporting is enabled, a report is shown during evolution no sooner than every 

<integer> recreations.  

 
reporting_delay_in_seconds <float> 

Where reporting is enabled, a report is shown during evolution no sooner than every 

<float> seconds. 

 

interactive <boolean> 

If set to true, the software will wait for the user to press the Return key after each 

stage of reporting. 

 

Any other directives (such as ‘end’) appearing in the parameter file are ignored as 

comments. 

 

D.3 Console Screen Reporting 

If reporting is enabled, the following output reports are printed to the console window 

at the various stages of evolution: 

 

First, the input program is shown in the form it appears in the input source file, with 

all white space removes, and in Polish notation. 

 

Read: 

  d = b + c;  e = b - c;  a = d + e 

Nospaced: 
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d=b+c;e=b-c;a=d+e 

Prefixed: 

; = d + b c ; = e - b c = a + d e 

 

Then, the overall symbol table is printed. 

 
Variable          b is an INPUT. 

Variable          c is an INPUT. 

Variable          a is an OUTPUT. 

Variable          d is an INTERMEDIATE. 

Variable          e is an INTERMEDIATE. 

Symbol table key ' 1': b        Flags: WY RY NN ON DY SN 

Symbol table key ' 2': c        Flags: WY RY NN ON DY SN 

Symbol table key ' 3': a        Flags: WY RY NY ON DN SN 

Symbol table key ' 4': d        Flags: WY RY NN ON DN SN 

Symbol table key ' 5': e        Flags: WY RY NN ON DN SN 

 

The flags correspond to the following variable properties: (Y is Yes, N is No) 

W: (Writable) The variable can be written to. 

R: (Readable) The variable can be read from. 

N: (New value) The semantics of the IR require that the value of this 

variable be consistent with the value it takes after high level interpretation of 

the parse tree. 

O: (Old value) The semantics of the IR require that the value of this variable 

remain unchanged through execution of the low level program. 

D: (Determinate) The contents of this variable are determinate at program 

start. 

S: (Symbolic constant) This variable is a symbolic constant with a value 

defined by its symbolic name (a numeric literal). 

 

Then, the program will report the construction of the parse tree in memory, followed 

by the results of loading the two parameter files. 

 
Loaded 'population_size = 1000' 

Loaded 'initial_maximum_program_size_in_instructions = 20' 

Loaded 'initial_minimum_program_size_in_instructions = 2' 

Loaded... 

 

For each evolution attempt, the target program is printed, together with the full 

symbol table and the instruction set (with selection rate). 

 

BEGIN EVOLUTION: 

Trying to evolve program: 

 

    (M001 = (b + c)) 

 

Symbol table key ' 1': b        Flags: WN RY NN OY DY SN 

Symbol table key ' 2': c        Flags: WN RY NN OY DY SN 
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Symbol table key ' 3': a        Flags: WN RN NN OY DN SN 

Symbol table key ' 4': d        Flags: WN RN NN OY DN SN 

Symbol table key ' 5': e        Flags: WN RN NN OY DN SN 

Symbol table key ' 6': M0       Flags: WN RN NN OY DN SN 

Symbol table key ' 7': M00      Flags: WN RN NN OY DN SN 

Symbol table key ' 8': M001     Flags: WY RY NY ON DN SN 

Symbol table key ' 9': M01      Flags: WN RN NN OY DN SN 

Symbol table key '10': M010     Flags: WN RN NN OY DN SN 

Symbol table key '11': M0101    Flags: WN RN NN OY DN SN 

Symbol table key '12': M011     Flags: WN RN NN OY DN SN 

Symbol table key '13': M0111    Flags: WN RN NN OY DN SN 

 

Instruction Set: 

ADD       , 0.143 (<= 0.143) 

SUB       , 0.143 (<= 0.286) 

MUL       , 0.143 (<= 0.429) 

DIVP      , 0.143 (<= 0.571) 

LOADV     , 0.143 (<= 0.714) 

LOADS     , 0.143 (<= 0.857) 

STORS     , 0.143 (<= 1.000) 

 

During evolution, the following report screen is displayed. 

 

 
 

The top row indicates the time spent so far in the current run, the number of new 

candidate programs produced through recombination so far, the effective generation 
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(the number of candidates generated divided by the population size), the fitness value 

of the best candidate program in the population and the niche-preemption run 

number. 

 

The remainder of the screen shows the fitness value, hits count, and the full listing of 

the best candidate program in the population. The left column shows an assembly-

like listing as used throughout this dissertation. The right column shows the semantic 

interpretation of the assembly-like instructions in a C-like language. If this listing is 

copied into a C source file and the string ‘Instruction’ replaced with ‘/*’ and the 

string ‘=>’ replaced with ‘*/’, this listing can be executed with little effort. 

 

D.4 Plain Text Program Input File Format 

The input file format is a simple, human readable plain-text format: 

 
-------------- 

Calculation involving intermediate variables. 

 

INPUT             c d e 

OUTPUT            a 

INTERMEDIATE      b  

SYMBOLIC_CONSTANT 2 

 

PROGRAM 

  b = (c + d); 

  a = ((b * e) + 2) 

ENDPROGRAM 

-------------- 

 

The INPUT, OUTPUT, INTERMEDIATE and SYMBOLIC_CONSTANT lines define the symbol 

table used in the main program. Each of the lines contains a space-separated list of 

variable names. Variable names may consist of character strings (a-z, A-Z, 0-9) of 

any length, but must not start with a number. Additional INPUT, OUTPUT, etc. lines may 

be used to construct long lists of variables. These categories map exactly to those 

symbol table variable kinds defined in the Scope subsection of the Solution 

Methodology. Numeric literals used in the program body (such as 2) must be 

declared in advance in the SYMBOLIC_CONSTANT section. 

 

The input program is given between the PROGRAM and ENDPROGRAM statements; the file 

parser concatenates all the non-whitespace characters between these lines to form the 

input program in its high level form. This input language recognises variable names, 

the assignment (=), sequencing (;), addition (+), subtraction (-), multiplication (*) and 

protected division (/) operators, and parentheses. The sequencing operator enforces 

the order of evaluation between statements, but the program must not end on a 

semicolon. Space characters and newlines are ignored. There exists operator 

precedence mirroring that of C, though this can be overridden with parentheses to 

explicitly lay out the parse tree. 
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Any characters outside the PROGRAM and ENDPROGRAM pair that are not part of a symbol 

table definition line are ignored as comments (such as the dashed lines and the 

program description). 

 

D.5 Output File Formats 

The format of the output file is different depending on the type of evolution used: 

 

Standard uses the following format: 

experiment 0 

evolve (a=((18*(c-d))+b)) 

26000 -1 536439 1 aborted 

experiment_over 0 

experiment 1 

evolve (a=((18*(c-d))+b)) 

22088 22 347685 1 verified 

experiment_over 1 

… 

 

Each experiment is bounded by an ‘experiment’ ‘experiment_over’ pair. An 

evolution attempt begins with ‘evolve’ followed by the target program. The five 

entries in the next row indicate the number of candidate solutions considered before 

the run ended, the length of the candidate solution in instructions (negative if no 

solution was found), the number of instruction considerations used, the number of 

niche-preemption runs used (this is always 1 for computational effort), and whether 

run ended with the creation of an acceptable solution (‘verified’) or ended due to 

abort (‘aborted’). 

 

Incremental uses a more complicated format: 

experiment 0 

evolve (M0101=(c-d)) 

7542 15 60677 1 verified 

constructed (c-d) 

length 15 

evolve (M010=(18*M0101)) 

4066 15 33139 1 verified 

constructed (18*(c-d)) 

length 30 

evolve (M01=(M010+b)) 

3223 8 21818 1 verified 

constructed ((18*(c-d))+b) 

length 38 

evolve (M0=(a=M01)) 

2365 7 19544 1 verified 

constructed (a=((18*(c-d))+b)) 

length 45 

experiment_over 0 

… 
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Each experiment is bounded by an ‘experiment’ ‘experiment_over’ pair. A 

fragment evolution attempt begins with ‘evolve’ followed by the target program 

fragment. The five entries in the next row indicate the number of candidate solutions 

considered before the run ended, the length of the candidate solution in instructions 

(negative if no solution was found), the number of instruction considerations used, 

the number of niche-preemption runs used (this is always 1 for computational effort), 

and whether run ended with the creation of an acceptable solution (‘verified’) or 

ended due to abort (‘aborted’). As the program is assembled in memory from the 

subprograms, the length of the composite program is reported as ‘length x’. The 

final ‘length’ value is the length of the complete program. 

 

Where refinement is used, additional lines are inserted: 

 
experiment 0 

evolve (M01=(b+c)) 

2900 15 23654 1 verified 

constructed (b+c) 

length 15 

evolve (M0=(a=M01)) 

3058 19 23729 1 verified 

constructed (a=(b+c)) 

length 34 

refinement 0 

evolve (a=(b+c)) 

26000 6 484011 1 verified 

refinement_over 0 

refinement 1 

evolve (a=(b+c)) 

26000 14 610821 1 verified 

refinement_over 1 

refinement 2 

evolve (a=(b+c)) 

26001 13 595384 1 verified 

refinement_over 2 

... 

experiment_over 0 

... 

 

After the complete program has been evolved, the refinement attempts are contained 

within ‘refinement’ ‘refinement_over’ pairs. The content of these pairs is the same as 

for the evolution of programs: number of candidate solutions considered (for 

refinement, this is always the maximum permitted by the parameter file), the length 

of the final program, the number of instruction considerations, the number of pre-

emption runs (refinement does not use this, however), and whether run ended with 

the creation of an acceptable solution or ended due to abort. 

 

The analyses performed in this dissertation were performed by interpreting these 

output files as space-separated-value files. 
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Appendix E Function and Data Type Reference 
E.1 Data Type and Constant Reference 
typedef long long BigInteger 

BigInteger is the base signed integer data type used throughout the project for the 

high level interpretation of the parse tree and the low level interpretation of candidate 

programs. Any data type with a full implementation of the arithmetic operators such 

as GNU GMP’s mpz_class can be used in place of long long. 

 
template <typename T> struct BoundsPair 

BoundsPair is a composite type used to represent a pair of bounds for a variable, 

such as when input variables are given random values at the time of fitness case 

initialisation. It contains methods allowing a variable to be compared with the bounds 

values. 

 
struct SymbolicVariableData 

SymbolicVariableData represents a row within the symbol table and contains all 

the information relating to a single variable such as its readable symbolic name, 

whether or not it can be written to, read from, and whether its value is important with 

respect to establishing the degree of semantic correlation. 

 
enum SYMBOL_TABLE_VARIABLE_ARCHETYPE 

SYMBOL_TABLE_VARIABLE_ARCHETYPE defines a number of constants used for 

convenience when adding variables to the symbol table. When a symbol is placed 

into the symbol table, an ARCHETYPE is used to indicate what type of variable is being 

inserted. 

   SYMBOL_TABLE_VARIABLE_ARCHETYPE_PARAMETER, Incoming value as function 

parameter. Writable, Readable, Value irrelevant, Determinate.  

   SYMBOL_TABLE_VARIABLE_ARCHETYPE_VARIABLE, Incidental variable in 

calculation         Writable, Readable, Value irrelevant, Indeterminate.  

   SYMBOL_TABLE_VARIABLE_ARCHETYPE_RESULT, Outgoing value from function 

parameter.    Writable, Readable, Value should match end state. 

Indeterminate.  

   SYMBOL_TABLE_VARIABLE_ARCHETYPE_PARAMETER_RESULT, Outgoing value 

from function parameter. Writable, Readable, Value should match end state. 

Determinate.  

   SYMBOL_TABLE_VARIABLE_ARCHETYPE_CONSTANT, Constant. Not writable, 

readable, value should match start state. Determinate.  

   SYMBOL_TABLE_VARIABLE_ARCHETYPE_SYMBOLIC_CONSTANT, Symbolic 

constant. Not writable, readable, value should match start state. Determinate. 

   SYMBOL_TABLE_VARIABLE_ARCHETYPE_BYSTANDER, Variable that is not used in 

calculation   Not writable, not readable, value should match start state. 

Indeterminate. 
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typedef unsigned int SYMBOL_TABLE_KEY 

SYMBOL_TABLE_KEY is used as the primary key into the SymbolTable to refer to a 

variable. SYMBOL_TABLE_KEY is used wherever a reference to a variable is necessary. 

 

typedef std::map<SYMBOL_TABLE_KEY,SymbolicVariableData> SymbolTableData 

SymbolTableData is the main storage structure within a SymbolTable mapping 

SYMBOL_TABLE_KEYs to SymbolicVariableData records. 

 
const SYMBOL_TABLE_KEY SYMBOL_TABLE_KEY_BAD = 0 

The value zero is a reserved SYMBOL_TABLE_KEY to signify an illegal access attempt 

upon a SymbolTable. 

 
enum RANDOM_SYMBOL_TABLE_KEY_NATURE 

Enumeration allowing for the retrieval of a random SYMBOL_TABLE_KEY relating to a 

variable that is readable, writable or both. 

   RANDOM_SYMBOL_TABLE_KEY_ANY - Return any variable randomly. 

   RANDOM_SYMBOL_TABLE_KEY_WRITABLE - Return a writable variable randomly. 

   RANDOM_SYMBOL_TABLE_KEY_READABLE - Return a readable variable randomly. 

 
typedef BigInteger PT_VALUE_TYPE 

PT_VALUE_TYPE is the single ‘value’ data type shared throughout high level 

interpretation of a parse tree. 

 
typedef SYMBOL_TABLE_KEY PT_REFERENCE_TYPE 

PT_REFERENCE_TYPE is the type used to manipulate references during high level 

interpretation of a parse tree. It is used to store the reference produced by the 

ereferation of a variable node as the left child of the assignment operator node. 

 
typedef unsigned int PT_COMPLEXITY_TYPE 

PT_COMPLEXITY_TYPE is the type used to store complexity heuristic values during 

high level interpretation of a parse tree.  

 
const PT_COMPLEXITY TYPE PARSE_TREE_COMPLEXITY_EVALUATING_CONSTANT 

This constant indicates the complexity heuristic contribution of the evaluation of a 

constant (loading an integer constant from a node).  

 
const PT_COMPLEXITY TYPE PARSE_TREE_COMPLEXITY_INITIALISING_CONSTANT 

This constant indicates the complexity heuristic contribution of the placing of a 

constant into memory during fitness case creation.  

 
struct ParseTreeEvaluationResult 

This structure combines a PT_VALUE_TYPE value type result with a 

PT_COMPLEXITY_TYPE complexity heuristic value to form a composite type that is the 

result of any ‘evaluation’ operation performed during high level interpretation of a 

parse tree.  
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struct ParseTreeEreferationResult 

This structure combines a PT_REFERENCE_TYPE reference type result with a 

PT_COMPLEXITY_TYPE complexity heuristic value to form a composite type that is the 

result of any ‘ereferation’ operation performed during high level interpretation of a 

parse tree. 

 
struct ParseTreeEvaluationEnvironment 

ParseTreeEvaluationEnvironment stores the full state of the interpreter during 

high level interpretation of a parse tree. It holds a handle to the associated 

SymbolTable part of the input IR, the full variable memory, the 

ParseTreeEvaluationResult produced by the root node of the parse tree, the 

number of evaluation calls; this can used to implement an upper bound of calls during 

interpretation using EVALUATIONS_LIMIT. 

 
const unsigned int MAXIMUM_PARSE_TREE_OPERATOR_LIKE_SYMBOL_ARITY = 4 

To avoid costly memory management operations, the ParseTreeNode structure 

representing a node is set to hold a static array of ParseTreeNode structure pointers 

pointing to its children. This constant defines the size of this static array. If the high 

level language is modified to include structures with more than this number of 

children, the user should increase this number. 

 
enum LOGGED_OPERATION_PERFORMED 

This enumeration defines a number of constants used to designate which type of high 

level operation was performed within each ParseTreeEvaluationLogEntry.  

   LOGGED_OPERATION_INITIALISATION, - initialisation at program start 

   LOGGED_OPERATION_ADDITION,  - addition parse tree node 

   LOGGED_OPERATION_SUBTRACTION,  - subtraction parse tree node 

   LOGGED_OPERATION_MULTIPLICATION, - multiplication parse tree node 

   LOGGED_OPERATION_DIVISION,  - division parse tree node 

   LOGGED_OPERATION_CONSTANT_LOAD,  - load of constant from variable 

   LOGGED_OPERATION_RETURN,   - return statement (not used)  

   LOGGED_OPERATION__END_OF_LIST,  - signifies highest value of enumeration 

 
const char *LOGGED_OPERATION_PERFORMED_STRINGS[LOGGED_OPERATION 

__END_OF_LIST] 

Maps enum LOGGED_OPERATION_PERFORMED values into printable strings for 

debugging output. 

 
struct ParseTreeEvaluationLogEntry 

Contains a record of a single evaluation performed during high level interpretation of 

a parse tree. Contains a enum LOGGED_OPERATION_PERFORMED value indicating the 

operation performed, the ParseTreeEvaluationResult values of the operands and 

the ParseTreeEvaluationResult value of the result. 
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typedef std::vector<ParseTreeEvaluationLogEntry> ParseTreeEvaluationLog 

Combines a linear series of ParseTreeEvaluationLogEntry records into a 

continuous ParseTreeEvaluationLog data type suitable for storing the complete log 

of a high level interpretation of a parse tree. 

 
struct ParseTreeNode 

A ParseTreeNode instance represents a single parse tree node within the parse tree 

component of an IR. 

 
enum Nature 

A value indicating whether the node is a leaf node (NODE_NATURE_LEAF_NODE) 

or an interior node (NODE_NATURE_INTERIOR_NODE).  

 
struct {} as_interior_node 

This structure contains the properties which are active if the node is an interior 

node. This includes the ParseTreeInteriorNodeSetMember reference 

indicating what kind of interior node this is, and an array of pointers to all child 

ParseTreeNode. 

 

 
struct {} as_leaf_node 

This structure contains the properties which are active if the node is a leaf node. 

This includes the ParseTreeLeafNodeSetMember reference indicating what 

kind of leaf node this is. 

 
#define EVALUATION_OF_PARSE_TREE_OPERATOR_LIKE_SYMBOL_SIGNATURE 

This define provides a simple name to the shared signature used within the functions 

defining the functionality of the evaluation operation used during high level 

interpretation of a parse tree. 

 
#define EREFERATION_OF_PARSE_TREE_OPERATOR_LIKE_SYMBOL_SIGNATURE 

This define provides a simple name to the shared signature used within the functions 

defining the functionality of the ereferation operation used during high level 

interpretation of a parse tree. 

 
enum PARSE_TREE_OPERATOR_LIKE_SYMBOL_SOURCE_SYNTAX_FORM 

This enumeration defines a number of bitmask flags defining how a given parse tree 

node should be displayed when it is to be printed in the form of a human readable 

string. 

PARSE_TREE_OPERATOR_LIKE_SYMBOL_SOURCE_SYNTAX_FORM_INVALID, 

Error value. 

PARSE_TREE_OPERATOR_LIKE_SYMBOL_SOURCE_SYNTAX_FORM_FLAG_NEWLINE, 

Symbol should be followed by a newline. 
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PARSE_TREE_OPERATOR_LIKE_SYMBOL_SOURCE_SYNTAX_FORM_FLAG_NO_BRACKETS, 

Symbol should not be surrounded by brackets. 

PARSE_TREE_OPERATOR_LIKE_SYMBOL_SOURCE_SYNTAX_FORM_FLAG_NO_SPACES, 

Symbol should not be surrounded by spaces. 

PARSE_TREE_OPERATOR_LIKE_SYMBOL_SOURCE_SYNTAX_FORM_FIX_MASK, 

Mask value used to isolate the following flags. 

PARSE_TREE_OPERATOR_LIKE_SYMBOL_SOURCE_SYNTAX_FORM_PREFIX, 

Symbol should precede the values upon which it acts. 

PARSE_TREE_OPERATOR_LIKE_SYMBOL_SOURCE_SYNTAX_FORM_INFIX, 

Symbol should be interposed between the values upon which it acts. 

 
enum ParseTreeOperatorLikeSymbolHandle 

This enumeration assigns a unique value to each of the constructs available in the 

high level language considered in this dissertation.  

   PARSE_TREE_OPERATOR_LIKE_SYMBOL_PLUS, 

   PARSE_TREE_OPERATOR_LIKE_SYMBOL_MINUS, 

   PARSE_TREE_OPERATOR_LIKE_SYMBOL_MULTIPLY, 

   PARSE_TREE_OPERATOR_LIKE_SYMBOL_DIVIDE, 

   PARSE_TREE_OPERATOR_LIKE_SYMBOL_SEMICOLON, 

   PARSE_TREE_OPERATOR_LIKE_SYMBOL_ASSIGNMENT, 

   PARSE_TREE_OPERATOR_LIKE_SYMBOL_RETURN, 

   PARSE_TREE_OPERATOR_LIKE_SYMBOL__END_OF_LIST, - marker value 

 
struct ParseTreeOperatorLikeSymbolMetadata 

Within the software, language features encoded as parse tree nodes are often referred 

as ‘operator-like symbols’. This structure holds the shared metadata associated with a 

given type of operator-like symbol. This includes the arity of the symbol (how many 

children it may have), the evaluation and ereferation functions it uses, the complexity 

heuristic contribution due to invocation, the symbol strings and syntax data used to 

display as it as a readable string. 

 
const unsigned int PARSE_TREE_OPERATOR_LIKE_SYMBOL_COUNT 

This constant uses the ParseTreeOperatorLikeSymbolHandle enumeration as a 

marker value for specifying static arrays in C++. 

 
const ParseTreeOperatorLikeSymbolMetadata parse_tree_operator_like 

_symbol_metadata[PARSE_TREE_OPERATOR_LIKE_SYMBOL_COUNT] 

This array contains all of the ParseTreeOperatorLikeSymbolMetadata data for the 

operator-like symbols defined.  

 
enum ParseTreeLeafNodeNature 

This enumeration defines the exact nature of a given parse tree leaf node. There is 

only one nature currently defined: access of a variable PARSE_TREE_LEAF_NODE 

_NATURE_VARNAME. 
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struct ParseTreeLeafNodeSetMember 

This structure defines a ‘prototype’ leaf node containing the properties common to all 

instances of a given leaf node. For example, all nodes referencing the variable ‘a’ are 

linked to a single ParseTreeLeafNodeSetMember defining this variable.  

 
enum ParseTreeInteriorNodeNature 

This enumeration defines the exact nature of a given parse tree interior node. There is 

only one nature currently defined: the operator-like symbol PARSE_TREE_INTERIOR 

_NODE_NATURE_OPERATOR_LIKE_SYMBOL. 

 
struct ParseTreeInteriorNodeSetMember 

This structure defines a ‘prototype’ interior node containing the properties common 

to all instances of a given interior node. For example, all addition nodes are linked to 

a single ParseTreeInteriorNodeSetMember defining addition. 

 
struct ParseTreeSourceProgram 

This structure represents the complete definition of an input IR. This structure 

consists of maps containing the ParseTreeInteriorNodeSetMember and 

ParseTreeLeafNodeSetMember lists defining the available nodes from which the 

parse tree may be constructed, a pointer to the ParseTreeNode at the root of the parse 

tree and a pointer to the SymbolTable holding the symbol table part of the IR. 

 
enum INPUT_SOURCE_PROGRAM_SYMBOLIC_VARIABLE_NATURE 

This enum defines values used to designate the symbol table type of variable read in 

from a plain text input source program file. 

INPUT_SOURCE_PROGRAM_SYMBOLIC_VARIABLE_NATURE_NO_NATURE, 

Invalid. 

INPUT_SOURCE_PROGRAM_SYMBOLIC_VARIABLE_NATURE_INPUT, 

This variable is only used as input to the program. 

INPUT_SOURCE_PROGRAM_SYMBOLIC_VARIABLE_NATURE_OUTPUT, 

This variable is only used as output. 

INPUT_SOURCE_PROGRAM_SYMBOLIC_VARIABLE_NATURE_INPUT_OUTPUT, 

This variable is both input and output. 

INPUT_SOURCE_PROGRAM_SYMBOLIC_VARIABLE_NATURE_CONSTANT, 

The value of this variable is constant during execution. 

INPUT_SOURCE_PROGRAM_SYMBOLIC_VARIABLE_NATURE_SYMBOLIC_CONSTANT, 

This variable is a symbolic constant with the same value as its symbolic name. 

INPUT_SOURCE_PROGRAM_SYMBOLIC_VARIABLE_NATURE_INTERMEDIATE, 

This variable is used to hold intermediate values. 

 
struct InputSourceProgramSymbolicVariableData 

This structure holds a record of the symbol table defined while the plain text input 

program is being read. It contains the symbolic name of the variable and the enum 

INPUT_SOURCE_PROGRAM_SYMBOLIC_VARIABLE_NATURE of the variable. 
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struct ParseTreeCreationStatus 

This structure is used to hold the status of the parse tree as it is constructed during 

parsing of the plain text input program source file. 

 
unsigned int INSTRUCTION_EXECUTIONS_MAX_COUNT 

This variable defines the maximum number of low level instructions which may be 

executed during evaluation of a fitness case. It is set when the parameters files are 

read. 

 
struct IndexSeries 

An IndexSeries instance holds a series of unique unsigned integers within a defined 

range. It is used to select candidate programs from the population during tournament 

selection. A number of helper functions are defined to allow the user to generate 

IndexSeries instances of any size from any population size. 

 
typedef std::vector<VirtualMachineInstructionExecutionRecord> 

VirtualMachineExecutionLog 

A VirtualMachineExecutionLog holds a complete record of the low level 

execution of a candidate program instruction string. It is composed of a linear series 

of VirtualMachineInstructionExecutionRecord instances. 

 
#define VM_INSTRUCTION_EXECUTION_SIGNATURE 

This define provides a simple name to the shared signature used within the functions 

defining the functionality of the low level instructions used in the low level virtual 

machine. 

 
const unsigned int VM_REGISTER_COUNT 

This constant defines the size of the register file, including program counter and stack 

pointer, which is defined as a static array in many places throughout the code. 

 
const unsigned int VM_REGISTER_PROGRAM_COUNTER 

The program counter is a register with an index two greater than that of the maximum 

general purpose register. This constant defines the index of the program counter 

register. 

 
const unsigned int VM_REGISTER_STACK_POINTER 

The stack pointer is a register with an index one greater than that of the maximum 

general purpose register. This constant defines the index of the stack pointer register. 

The stack pointer is not used in any of the experiments in this dissertation. 
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unsigned int vm_register_general_purpose_count 

unsigned int vm_register_final_general_purpose 

These variables hold the number of general purpose registers available to low level 

programs, and the index of the final general purpose register in the register file. These 

variables are initialised at the time of reading the parameter files. 

 
const unsigned int VM_INDEXED_MEMORY_TOTAL_SIZE 

const unsigned int VM_INDEXED_MEMORY_STACK_SECTION_SIZE 

const int VM_INDEXED_MEMORY_STACK_SECTION_INDEX_HIGHEST 

const int VM_INDEXED_MEMORY_STACK_SECTION_INDEX_LOWEST 

const unsigned int VM_INDEXED_MEMORY_FREE_SECTION_SIZE 

These variables define the size and parameters of the stack section when indexed 

memory is used. These variables are not used in the experiments described in this 

dissertation. 

 
std::vector<std::string> VM_REGISTER_MNEMONIC 

This vector holds the readable mnemonic names of each register in the file (such as 

the ‘PC – program counter’). 

 
typedef BigInteger VM_TYPE 

VM_TYPE is the value type used throughout the low level virtual machine. 

 
struct VirtualMachine 

A VirtualMachine instance holds the persistent state of a low level virtual machine 

during execution of a candidate program. It holds the state of the register file, the 

state of the variable memory, the error state and the total number of instructions 

executed so far. 

 
enum VM_STATE_BAD_REASON 

This enumeration assigns a constant to each of the possible error states of the virtual 

machine. 

   VM_STATE_BAD_REASON_ZERO,           - no bad state 

   VM_STATE_BAD_REASON_HALT_INSTRUCTION_ENCOUNTERED, 

   VM_STATE_BAD_REASON_INSTRUCTION_OUT_OF_RANGE, 

   VM_STATE_BAD_REASON_INSTRUCTION_UNUSUAL_INPUT, 

   VM_STATE_BAD_REASON_STACK_OVERFLOW, 

   VM_STATE_BAD_REASON_MEMORY_ACCESS_OUT_OF_BOUNDS, 

   VM_STATE_BAD_REASON_PROGRAM_COUNTER_OUT_OF_RANGE, 

   VM_STATE_BAD_REASON_DIVISION_BY_ZERO, 

   VM_STATE_BAD_REASON_INSTRUCTION_LIMIT_REACHED, 

   VM_STATE_BAD_REASON_UNIDENTIFIED_ERROR_STATE, 

   VM_STATE_BAD_REASON__END_OF_LIST,   - marker value for arrays 

 
const unsigned int VM_STATE_BAD_REASON_COUNT 

This constant uses the marker value from enum VM_STATE_BAD_REASON to specify the 

size of static arrays. 
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const char *VM_STATE_BAD_REASONS_STRINGS[VM_STATE_BAD_REASON_COUNT] 

This array contains a printable human-readable string version of each bad state 

indicated by enum VM_STATE_BAD_REASON. 

 
enum VM_INSTRUCTION_OPERATION 

This enumeration assigns a unique constant to each low level language operation 

implemented in the virtual machine interpreter. These values are used whenever a 

reference to a low level operation is needed: 

   VMI_A_ADD, 

   VMI_A_SUB, 

   VMI_A_MUL, 

   VMI_A_DIVP, (virtual machine instruction, arithmetic) 

 

   VMI_M_LOADS,(virtual machine instruction, memory) 

   VMI_M_STORS, 

 

   VMI_V_LOADV,(virtual machine instruction, value) 

 
const unsigned int VM_INSTRUCTION_OPERATION_COUNT 

This constant uses the marker value from enum VM_INSTRUCTION_OPERATION  to 

specify the size of static arrays. 

 
const unsigned int INSTRUCTION_OPERANDS_MAX_COUNT 

This constant defines the maximum number of operands an instruction in the low 

level language can take. This value is used to specify the value of static arrays. 

 
struct InstructionOperand 

An InstructionOperand instance holds one operand component of a complete low 

level Instruction. It has the ability to represent a register index, symbol table key 

or direct signed integer value depending on the containing Instruction. 

 
struct Instruction 

An Instruction instance is a complete assembly language instruction expressed in 

the low level language. It consists of an operation part defined by a 

VM_INSTRUCTION_OPERATION and up to INSTRUCTION_OPERANDS_MAX_COUNT 

operands of type InstructionOperand. 

 
typedef std::list<Instruction> InstructionString; 

A string of instructions in the low level language is stored as a std::list of 

Instruction instances. 

 
struct VMInstructionOperationMetadata 

This structure holds the shared metadata associated with a given defined operation in 

the low level language. This includes the readable mnemonic name of the operation, a 

pointer to the evaluation function it uses, and the number of operands it takes. 
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struct VirtualMachineInstructionExecutionRecordLocation 

Within a VirtualMachineInstructionExecutionRecord instance, a value may be 

read from a register file location or a variable in memory. This structure may hold 

information on either, and its interpretation is dependent on the operation used to 

perform the operation.  

 
struct VirtualMachineInstructionExecutionRecord 

An instance of this structure holds a full record of the execution of a single low level 

instruction in the low level virtual machine. It contains the operation performed, the 

result produced and its location, the values of the operands used to calculate the result 

and their location, and the values contained in the register file both before and after 

the execution of the instruction. 

 
#define DIVISION_BY_ZERO_IS_ERROR 

This define may be used to configure the low level interpreter to either use protected 

division when evaluating the DIV instruction, or to abort execution with an error state. 

This dissertation considers the case where protected division is used. 

 
enum JUMP_PREDICATE 

This enumeration is not used. 

 
VMInstructionOperationMetadata vm_instruction_operation_metadata 

[VM_INSTRUCTION_OPERATION_COUNT] 

This array holds all the metadata for the operations implemented by the low level 

language interpreter. 

 
enum VM_EXECUTE_INTERACTIVE_FLAG 

This flag is used to indicate to the virtual machine interpreter whether or not it should 

active. It can take the values VM_EXECUTE_NONINTERACTIVE or 

VM_EXECUTE_INTERACTIVE. 

 
struct InstructionProbability 

This structure combines a VM_INSTRUCTION_OPERATION with a rate of inclusion. It 

also contains a member indicating the cumulative probability upper bound as a 

convenience (used in the selection algorithm). 

 
typedef std::vector<InstructionProbability> InstructionSetProbabilistic 

Multiple InstructionSetProbability are combined in a std::vector to produce 

a single InstructionSetProbabilistic containing a list of all the operations 

available to the system to select from together with their rate of selection (as a 

probability). 

 
struct GeneticLinearProgram 

Within the LGP system, a candidate program represented by a 

GeneticLinearProgram instance is composed of an InstructionString holding 
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the candidate program itself, a floating point value indicating the fitness of the 

program and an unsigned integer holding the number of hits. 

 
struct FitnessCase 

A fitness is represented in the system by an instance of the FitnessCase structure. 

An instance of FitnessCase contains the starting and ending values of all the 

variables in the symbol table, the return value of the root node of the parse tree (not 

used) and a ParseTreeEvaluationLog indicating the model evaluation produced by 

high level interpretation of the parse tree. 

 
struct VirtualMachineExecutionRegisterStatus 

An instance of this structure holds the state of a single register at some point within a 

log of virtual machine execution. 

 
struct VirtualMachineExecutionRegisterStatusRecord 

This structure combines a number of VirtualMachineExecutionRegisterStatus 

instances to produce a full record of the state of the register file at some point within 

a log of virtual machine execution. 

 
typedef std::vector<VirtualMachineExecutionRegisterStatusRecord> 

VirtualMachineExecutionRegisterStatusTimeline 

This data type holds a complete record of the state of the registers between the 

execution of every low level instruction by combining a series of 

VirtualMachineExecutionRegisterStatusRecord in a std::vector. 

 
struct GeneticLinearProgram_Crossover_Pair 

This structure is used as a convenient method for transferring the two 

GeneticLinearProgram instances produced as a result of the 

GeneticLinearProgram_Crossover2 crossover implementation function. 

 
typedef std::list<GeneticLinearProgram **> SortedGeneticLinearProgramPopulation 

An additional layer of pointers to the GeneticLinearProgram instances forming the 

population candidate programs is stored in this std::list based data type. The use 

of this list structure allows for fast insertion and deletion of programs from the list: it 

is assumed that the majority of programs produced as a result of the recombination 

operators will be significantly worse fitness than those already present. Therefore, 

this structure is biased to insert new programs from the ‘worse’ side, requiring only a 

small number of fitness comparisons to determine the position of this new program in 

the sorted population. This comes at the cost of many fitness value comparisons if the 

fitness of the new program is ‘good’ rather than ‘bad’. 

 
struct EvolutionSystem_Parameters 

This structure is used to hold all of the evolutionary system parameters. The layout of 

this structure is designed to mirror the plain text file format used to enter the 

parameters. 
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struct EvolutionSystem_Report 

This structure is used to hold the result of a single invocation of the evolutionary 

system to evolve a program or program fragment. It holds statistics such as the total 

number of candidate programs considered, the total number of niche pre-emption 

runs required and the total number of low level candidate program instructions 

considered. 

 

E.2 Function and Macro Reference 
 std::string bigIntegerToString(const BigInteger &b)  

         int bigIntegerToInt   (const BigInteger &b)  

unsigned int bigIntegerToUInt  (const BigInteger &b) 

Converts the given BigInteger into a std::string, signed integer or unsigned 

integer respectively. The implementation of these functions differs depending on the 

underlying data type of BigInteger. If the conversion results in truncation, only the 

least significant bits are returned. 

 
#define wait_for_return() 

Prints a prompt to the console window and waits for the user to press Return. 

 
static inline float random_float() 

Returns a random float value from 0 to <1. 

 
static inline float random_float(float lower, float upper) 

Returns a random float value lower <= x <= upper. 

 
static inline unsigned int random_int_0_to_(unsigned int max) 

Returns a random unsigned integer in the range 0 <= x <= max. 

 
static inline unsigned int random_int_1_to_(unsigned int max)  

Returns a random unsigned integer in the range 1 <= x <= max. 

 
static inline int random_int(int lower, int upper)  

Returns a random signed integer in the range lower <= x <= upper. 

 
template <typename T> 

static inline const T &max(const T &a, const T &b) 

Returns a reference (const) to the greater of a and b by operator>().  

 
template <typename T> 

static inline const T &max(const T &a, const T &b) 

Returns a reference (const) to the lesser of a and b by operator<(). 

 
bool BoundsPair::Within(const T &value) 

Returns true if value is within the bounds given by this instance of BoundsPair, 

else false. 
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template <typename T> 

static inline std::string String_ToString(const T& t) 

Returns t in the form of a std::string. 

  
static inline bool char_in_str(const char *s, char c) 

Returns true if the character c is present in the null terminated string s. 

 
std::string String_LoseTrailing(const std::string &string, 

                                const char *characters) 

Return a duplicate of string with all characters from null terminated string 

characters removed from the end of the string. E.g. If characters = “\r\n ”, 

then this function returns a copy of string with carriage returns, newlines and space 

characters removed from the end. 

 
static inline std::string String_LoseTrailingNewlines 

                                     (const std::string &string)  

static inline std::string String_LoseTrailingSpaces 

                                     (const std::string &string) 

Return a copy of string with trailing newlines and spaces removed respectively. 

 
std::string String_ReturnWord(const std::string &s, 

                              unsigned int word, 

                              const char *delimiters = " ") 

Return the word in zero-indexed position word from the left of string s using the 

characters within the null-terminated string delimiters as word delimiters. For 

example String_ReturnWord(std::string(“Jones the cat”), 1, “ “) returns 

a std::string containing “the”. 

 
std::string String_ReturnWordRemainder(const std::string &s, 

                                       unsigned int word, 

                                       const char *delimiters = " ") 

Return the remainder of the string s after removing all characters before the word in 

zero-indexed position word from the left of string s using the characters within the 

null-terminated string delimiters as word delimiters. For example 
String_ReturnWordRemainder(std::string(“Jones the cat”), 1, “ “) 

returns a std::string containing “ cat”. 

 

void SymbolicVariableData_ApplyArchetype 

      (SymbolicVariableData *symbolic_variable_data,           

       SYMBOL_TABLE_VARIABLE_ARCHETYPE archetype) 

Applies the SYMBOL_TABLE_VARIABLE_ARCHETYPE archetype to the 

SymbolicVariableData pointed to by symbolic_variable_data to establish its 

properties, such as read-only status, constant nature, etc. 
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SYMBOL_TABLE_KEY SymbolTable_InsertSymbolTableEntry( 

                         SymbolTable *symbol_table, 

                   const std::string &variable_symbolic_name, 

     SYMBOL_TABLE_VARIABLE_ARCHETYPE  archetype, 

                          BigInteger  value = 0) 

Creates a new symbol in the SymbolTable instance symbol_table with symbolic 

name variable_symbolic_name with the archetype archetype. If this is symbolic 

constant, it has value value. 

 
SymbolicVariableData *SymbolTable_QuerySymbolTableKey 

    (SymbolTable *_symbol_table, 

     const SYMBOL_TABLE_KEY _key) 

Returns a pointer to the SymbolicVariableData containing information about the 

symbol indicated by the SYMBOL_TABLE_KEY _key. 

 
SYMBOL_TABLE_KEY SymbolTable_ReverseLookupKeyFromVarname 

      (SymbolTable *_symbol_table, 

       const char *_varname, 

       bool  _allow_return_bad) 

Return the SYMBOL_TABLE_KEY that can be used to access the 

SymbolicVariableData relating to the symbol with the symbolic name _varname. 

 
SymbolicVariableData *SymbolTable_QuerySymbolTableVarname 

            (SymbolTable *_symbol_table, 

             const char *_varname) 

Return a pointer to the SymbolicVariableData containing information about the 

symbol with symbolic name _varname. 

 
void SymbolTable_ReaffirmContainingTypes(SymbolTable *symbol_table) 

Updates the contains_any_readable_variables and contains_any_writable 

_variables members of the SymbolTable after alteration or insertion of variables. 

 
SYMBOL_TABLE_KEY SymbolTable_RandomSymbolTableKey 

       (SymbolTable *symbol_table, RANDOM_SYMBOL_TABLE_KEY_NATURE nature) 

Return a random SYMBOL_TABLE_KEY from symbol_table of nature nature as 

defined by RANDOM_SYMBOL_TABLE_KEY_NATURE. 

 
void SymbolTable_Print(SymbolTable *symbol_table) 

Print a human readable version of the symbol table symbol_table to standard output. 

  
void ParseTreeEvaluationLogEntry_Print 

        (const ParseTreeEvaluationLogEntry *entry) 

Print a ParseTreeEvaluationLogEntry in human readable form to standard output. 

 
ParseTreeEvaluationResult parse_tree_node_evaluate__plus 

         (EVALUATION_OF_PARSE_TREE_OPERATOR_LIKE_SYMBOL_SIGNATURE) 

Performs high level interpreter evaluation of the given node interpreting it as an 

addition node. In general parse_tree_node_evaluate__* functions supply the 
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implementation of the evaluation capability of the interpreter for each possible type 

of input node. 

 
ParseTreeEvaluationResult parse_tree_node_evaluate__return 

         (EREFERATION_OF_PARSE_TREE_OPERATOR_LIKE_SYMBOL_SIGNATURE) 

Performs high level interpreter ereferation of the given node interpreting it as a 

variable node. The variable node is the only parse tree node which can be ereferated 

currently, and it returns the SYMBOL_TABLE_KEY associated with the variable it 

represents. 

 
ParseTreeEreferationResult parse_tree_node_ereferate__invalid 

         (EREFERATION_OF_PARSE_TREE_OPERATOR_LIKE_SYMBOL_SIGNATURE) 

Returns an error indicating that the given type of node cannot be the subject of 

ereferation. This is used to prevent the user from supplying a program in the form 

(2+3) = a, where the attempt to ereferate (interpret as a reference) the addition node 

is meaningless in the high level language as defined. 

 
ParseTreeLeafNodeSetMember *ParseTreeLeafNodeSetMember_NewParseTreeLeafNode 

SetMember_Internal_NewParseTreeLeafNodeSetMember() 

Allocates memory for a new ParseTreeLeafNodeSetMember and returns a pointer to 

the new instance. A ParseTreeLeafNodeSet is a set of ParseTreeLeafNodeSet 

Members. These are the primitives that one can build a parse tree out of. You have to 

define all these PTLNSMs first, and then use an 'instantiation' function upon them to 

get the actual nodes for inclusion in the parse tree.  

 
ParseTreeLeafNodeSetMember *ParseTreeLeafNodeSetMember_NewParseTreeLeaf 

NodeSetMember_VariableFromSymbolTableKey(SYMBOL_TABLE_KEY varkey) 

Allocate a new ParseTreeLeafNodeSetMember that, when invoked, can create a 

ParseTreeNode of the ‘variable’ variety using the variable associated with varkey.  

 
ParseTreeInteriorNodeSetMember *ParseTreeInteriorNodeSetMember_NewParseTree 

InteriorNodeSetMember_Internal_NewParseTreeInteriorNodeSetMember() 

Allocates memory for a new ParseTreeInteriorNodeSetMember and returns a 

pointer to the new instance. A ParseTreeInteriorNodeSet is a set of 

ParseTreeInteriorNodeSetMembers. These are the primitives that one can build a 

parse tree out of. You have to define all these PTINSMs first, and then use an 

'instantiation' function upon them to get the actual nodes for inclusion in the parse 

tree. 

 
ParseTreeInteriorNodeSetMember *ParseTreeInteriorNodeSetMember_NewParseTree 

InteriorNodeSetMember_OperatorLikeSymbol 

     (ParseTreeOperatorLikeSymbolHandle operator_like_symbol) 

Allocate a new ParseTreeInteriorNodeSetMember that, when invoked can create a 

ParseTreeNode of the operator like symbol variety designated by the 

ParseTreeOperatorLikeSymbolHandle operator_like_symbol. 
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unsigned int ParseTreeNode_OperatorLikeSymbol_ReturnArity 

     (const ParseTreeNode *node) 

Return the arity of the language feature reflected by the ParseTreeNode node. 

 
void ParseTreeEvaluationEnvironment_Initialise 

    (ParseTreeEvaluationEnvironment *environment, SymbolTable *symbol_table) 

Set a ParseTreeEvaluationEnvironment to default values before execution. Copy 

the values of the symbolic constants from the symbol table to their respective places 

in the map.  

 
ParseTreeEvaluationResult ParseTreeNode_Evaluate 

     (EVALUATION_OF_PARSE_TREE_OPERATOR_LIKE_SYMBOL_SIGNATURE) 

Evaluates the program given by a given ParseTreeNode in the specified 

ParseTreeEvaluationEnvironment. Returns a ParseTreeEvaluationResult. This 

function is designed to operate recursively; if the indicated node is an interior node, 

the child nodes are evaluated by means of this function and then used to calculate the 

value of this node. Throughout execution of this function, a log of all evaluations 

performed is kept.  

 
ParseTreeEreferationResult ParseTreeNode_Ereferate 

     (EREFERATION_OF_PARSE_TREE_OPERATOR_LIKE_SYMBOL_SIGNATURE) 

Ereferates the program fragment given by a given ParseTreeNode in the specified 

ParseTreeEvaluationEnvironment. Returns a ParseTreeEreferationResult. 

This function is designed to operate recursively; if the indicated node is an interior 

node, it is possible for some kind of indirect referencing to occur (i.e. a calculation is 

performed, which results in the value returned by this function). This is not attempted 

in this dissertation. 

  
void ParseTreeNode_Print_AsReadableExpression 

          (const ParseTreeNode *node, SymbolTable *symbol_table) 

Prints a human readable expression of the input ParseTreeNode tree to standard 

output using the syntax rules defined in the operator-like symbol metadata. The 

output is highly similar to high level source code and may contain newlines. 

 
std::string ParseTreeNode_Print_ToString 

          (const ParseTreeNode *node, SymbolTable *symbol_table) 

Return a std::string human readable expression of the input ParseTreeNode tree 

using the syntax rules defined in the operator-like symbol metadata. The output is 

highly similar to high level source code and will not contain newlines. 

 
void SwitchNodes(ParseTreeNode **a, ParseTreeNode **b) 

Switches the ParseTreeNode instances pointed to by the pointers pointed to by a and 

b in place. 

 
ParseTreeNode *ParseTreeNode_Internal_NewNode() 

Allocates and returns a new ParseTreeNode. Used internally during the construction 

and initialisation of ParseTreeNode instances. 
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void ParseTreeNode_Internal_FreeParseTreeNode(ParseTreeNode *node) 

Free the memory used to store a ParseTreeNode. Used internally to manage 

ParseTreeNode instances. 

 
void ParseTreeNode_DestroyTree(ParseTreeNode *n) 

Free all the memory allocated to the full ParseTreeNode tree contained within node 

n. This only works if the tree doesn't contain any undefined children. If the tree 

contains pointers that point to bad nodes the program will crash. 

 
unsigned int ParseTreeNode_GetHighestDepth(const ParseTreeNode *node)  

Returns the greatest depth of a ParseTreeNode tree. A leaf node alone counts as 1. 

 
unsigned int ParseTreeNode_GetTotalNumberOfNodesInTree 

       (const ParseTreeNode *node) 

Return the total number of nodes in the given ParseTreeNode tree, including the 

root. 

 
ParseTreeNode *ParseTreeNode_DuplicateNode(const ParseTreeNode *node) 

Returns a shallow copy of the ParseTreeNode pointed to by node. This duplicate 

will have invalid child pointers if it is an interior node and it is used in its default 

state, as the original and the duplicate will point to the same children. 

 
ParseTreeNode *ParseTreeNode_DuplicateTree(const ParseTreeNode *node)  

Returns a deep copy of the ParseTreeNode tree pointed to by node.  

 
ParseTreeNode *ParseTreeNode_NewLeafNodeFromParseTreeLeafNodeSetMember 

      (const ParseTreeLeafNodeSetMember *leaf_node_master) 

Instantiate a new ParseTreeNode given the 'master node' 

ParseTreeLeafNodeSetMember leaf_node_master. This is the method used to 

create new leaf tree nodes from the ‘prototype’ set.  

 
ParseTreeNode *ParseTreeNode_NewIncompleteInteriorNodeFromParseTreeInterior 

NodeSetMember(const ParseTreeInteriorNodeSetMember *interior_node_master) 

Instantiate a new ParseTreeNode given the 'master node' ParseTreeInterior 

NodeSetMember interior_node_master. This is the method used to create new 

interior tree nodes from the ‘prototype’ set. The child pointers will be invalid and will 

require attention. 

 
void ParseTreeSourceProgram_DestroySourceProgram 

       (ParseTreeSourceProgram *parse_tree_source_program) 

Destroys an entire ParseTreeSourceProgram together with its symbol table, 

parse tree program, and all of the ‘prototype’ master node sets. 

 
std::string String_RemoveOuterBracketsFromString(const std::string &input) 

Returns a copy of the std::string input with all of the matched curved bracket 

pairs appearing on the start and end of the string removed. 
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std::string String_PrefixifySourceCodeString(const std::string &input) 

Transforms a high level program string in infix form as read from a plain text input 

file into a string in prefix form using the priorities map to define precedence. 

 
std::string String_RemoveWhitespacesFromString(const std::string &input) 

Return a copy of the std::string input with all whitespace, carriage return, newline 

and tab characters removed. 

 
ParseTreeSourceProgram *ParseTreeSourceProgram_ 

      ConstructSourceProgramFromFile(const std::string &input_filename) 

Creates a ParseTreeSourceProgram containing both symbol table and parse tree 

components of the input IR based on the contents of the given plain text high level 

source file. Returns NULL on error. 

 
ParseTreeNode *ParseTreeCreation_CreateParseTreeNode 

        (ParseTreeCreationStatus *status) 

Create a ParseTreeNode from the next node in the Polish notation program string 

held within the ParseTreeCreationStatus structure. This function is designed to 

work recursively, performing a depth first initialisation of the parse tree by 

considering the Polish notation string as a stack. 

 
void ParseTreeSourceProgram_CalculateOperatorLikeSymbolPopulations 

(ParseTreeNode *program, 

 std::map<const ParseTreeInteriorNodeSetMember *, unsigned int> &population) 

Calculate the total number of occurrences of each ParseTreeInteriorNode 

SetMember-based interior node in the given ParseTreeNode program and store these 

values in the map population. 

  
IndexSeries *IndexSeries_NewIndexSeries(unsigned int _length) 

Allocate and return a new, blank IndexSeries of length _length. 

  
void IndexSeries_DestroyIndexSeries(IndexSeries *index_series) 

Free the IndexSeries pointed to by index_series. 

 
IndexSeries *IndexSeries_ReturnTournament(unsigned int population_size, 

                                          unsigned int tournament_size) 

Given a population size and a tournament size, return tournament_size unique 

indices in the range 0 <= x < population size. This function is suitable for 

generating a list of indices of programs from a population of known size for 

participation in tournament selection. 

 
static inline unsigned int VirtualMachine_RandomRegister() 

Returns a random register index from the full range of the register file. This function 

is not used, as the stack pointer and program counter are not available for 

manipulation by the low level programs. 
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static inline unsigned int VirtualMachine_RandomGeneralPurposeRegister() 

Returns a random register index from the range of general purpose registers in the 

register file. 

 
void VirtualMachine_InitialiseStaticMnemonics() 

Populate the array containing the human readable mnemonics for the registers in the 

register file of the virtual machine. 

 
void VirtualMachine_Initialise 

      (VirtualMachine *vm, SymbolTable *symbol_table) 

Fill the VirtualMachine with default values; copy the starting values from the 

symbol table into the virtual machine. 

 
void VirtualMachine_InitialiseFromExisting 

      (VirtualMachine *vm, VirtualMachine *vm_existing) 

Copy the state of one VirtualMachine into another. 

 
int VirtualMachine_IsValidMemoryLocation(int memory_location) 

Return an int indicating if the given index can refer to some part of indexed 

memory. This function is not used in this dissertation as indexed memory is not 

investigated. 

 
void VirtualMachine_Abort(VirtualMachine *vm, VM_STATE_BAD_REASON reason) 

Abort execution within the given VirtualMachine with the error state reason. 

 
const char *VirtualMachine_ExplainCurrentBadState(VirtualMachine *vm) 

Return the human readable string associated with the current error state of the given 

VirtualMachine instance 

 
Instruction *InstructionString_RetrieveInstruction 

       (InstructionString *is, unsigned int instruction_cell_index) 

Return a pointer to the instruction in zero-indexed position 

instruction_cell_index in the InstructionString is. 

 
int InstructionString_IsInstructionIndexWithinRange 

       (InstructionString *is, int program_counter) 

Return an int indicating if it is safe to access the instruction in zero-indexed position 

instruction_cell_index in InstructionString is. 

 
unsigned int InstructionString_ReturnHighestRegisterUsed(InstructionString 

*is) 

Return the index of the highest virtual machine register referred into the program 

pointed to by is. 
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InstructionString *InstructionString_ConstructNewCompositeString( 

Construct a new InstructionString by taking the first start1 instructions of str1, 

then count2 instructions from str2 starting at start2, then the remaining 

instructions from str1 that appear count1 instructions after start1. 

 
InstructionString *InstructionString_DuplicateInstructionString 

       (InstructionString *is) 

Return a duplicate of the InstructionString is. 

 
void InstructionString_ConcatenateInstructionStringsInPlace 

       (InstructionString *is1, InstructionString *is2) 

Append a copy of the Instruction instances within is2 to the end of is1. 

 
InstructionString *InstructionString_ConcatenateInstructionStrings 

       (InstructionString *is1, InstructionString *is2) 

Return a new InstructionString containing the instructions from is1 followed by 

the instructions from is2. 

 
void InstructionString_AppendInstruction 

       (InstructionString *str, Instruction *i) 

Append the Instruction i to the end of InstructionString str. 

 
void InstructionString_InsertInstruction 

   (InstructionString *str, unsigned int insertion_position, Instruction *i) 

Insert the Instruction i before the instruction at index insertion_position in 

InstructionString str. 

 
void TreeWalkingCompiler_BasicCompileParseTreeSourceProgram 

       (ParseTreeSourceProgram *program, 

                 ParseTreeNode *node, 

                  unsigned int  register_destination, 

             InstructionString *output_string) 

Use the tree-walking compiler algorithm to compile the program expressed by the 

ParseTreeSourceProgram program and ParseTreeNode node, using the register 

index register_destination as the basis for calculation, appending the produced 

output program to the InstructionString pointed to output_string. This function 

is designed to act recursively as described in the body of the dissertation. 

 
void VirtualMachineInstructionExecutionRecord_Print 

    (VirtualMachineInstructionExecutionRecord *r, SymbolTable *symbol_table) 

Print a VirtualMachineInstructionExecutionRecord in human readable form to 

standard output.  

 
#define assert_register_good(_r_) 

Insert an assert ensuring that register index _r_ is in the range of valid register file 

indices.  
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#define assert_symbol_good(_s_) 

Insert an assert ensuring that the SYMBOL_TABLE_KEY _s_ is in the range of valid 

symbol table keys. 

 
void vm_instruction_implementation_vmi_a_add 

       (VM_INSTRUCTION_EXECUTION_SIGNATURE) 

Interpret the given Instruction as an ADD instruction and perform it within the given 

VirtualMachine environment, logging the calculation to the VirtualMachine 

InstructionExecutionRecord. In general vm_instruction_implementation_* 

functions supply the base implementation of each low level operation for each 

instruction defined in the low level language. 

 
int VirtualMachineInstruction_IsValidInstruction(Instruction *i) 

Return an int indicating if the operation part of the given Instruction is valid; it 

may have been tampered with and invalidated by a recombination operation (or 

program bug). 

 
void VirtualMachineInstruction_ExecuteInstruction 

        (VM_INSTRUCTION_EXECUTION_SIGNATURE) 

Execute the given instruction in the given VirtualMachine. This function extracts 

the VM_INSTRUCTION_OPERATION for the given instruction and executes the 

appropriate base implementation function (described above) for that operation. 

 
void VirtualMachine_PrintRegisters(VirtualMachine *vm)  

Print the contents of all registers (with mnemonic) in the given VirtualMachine 

state to standard output. 

 
void VirtualMachineInstructionString_Advance(          VirtualMachine *vm, 

                                                    InstructionString *is, 

                                           VirtualMachineExecutionLog *log) 

Advance the program counter register in the given VirtualMachine and execute the 

next instruction in the InstructionString, recording the execution in the log log. 

 

 
void VirtualMachineInstructionString_ExecuteInstructionString 

       (              VirtualMachine *vm, 

                   InstructionString *is, 

          VirtualMachineExecutionLog *log, 

                        unsigned int  instruction_limit, 

         VM_EXECUTE_INTERACTIVE_FLAG  interactive) 

Executes the given InstructionString in the given VirtualMachine state, 

recording all executions in the log log. A maximum of instruction_limit 

instructions will be executed before execution is terminated with error state 

VM_BAD_REASON_INSTRUCTION_LIMIT_REACHED. If interactive is 

VM_EXECUTE_INTERACTIVE, then the execution will pause after every instruction 

execution. 
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void VirtualMachineInstruction_PrintSemantics 

       (Instruction *i, SymbolTable *symbol_table)  

Print a human readable version of the semantics of the given Instruction to 

standard output. 

 
void Instruction_Print 

       (Instruction *i, SymbolTable *symbol_table, bool with_semantics) 

Print an assembly-like representation of the given Instruction to standard output. 

 
void InstructionString_Print (InstructionString *is, 

                                    SymbolTable *symbol_table, 

                                            bool with_semantics = false) 

Print an assembly like representation of a complete InstructionString to standard 

output. If with_semantics is true then a second column of human readable 

semantics are printed alongside. 

 
void InstructionSetProbabilistic_NormaliseAndCalculateCumulatives 

       (InstructionSetProbabilistic *isp) 

This function normalises and calculates the cumulative probabilities of all the 

VM_INSTRUCTION_OPERATIONs in the InstructionSetProbabilistic. After this, a 

random number in the range 0.0f-1.0f can be used to select a 

VM_INSTRUCTION_OPERATION from the set by comparing against cumulative 

probability value in turn. 

 

After the execution of this function, the InstructionSetProbabilistic will have 

the following values. The second column of values show the cumulative probability 

of each instruction. The cumulative probability of each instruction and the previous 

instruction provide a set of bounds for selecting this instruction with a random value 

in the range 0.0f-1.0f. 

 
Instruction Set: 

ADD       , 0.143 (<= 0.143) 

SUB       , 0.143 (<= 0.286) 

MUL       , 0.143 (<= 0.429) 

DIVP      , 0.143 (<= 0.571) 

LOADV     , 0.143 (<= 0.714) 

LOADS     , 0.143 (<= 0.857) 

STORS     , 0.143 (<= 1.000) 

 
void Instruction_FurnishInstruction(Instruction *instruction, 

                                    SymbolTable *symbol_table, 

                                           int operand_no = -1) 

This function initialises some or all of the given Instruction based on the value of 

operand_no. If operand_no is less than zero, we fill in the instruction completely. If 

operand_no is non zero, we fill in the appropriate operand. If operand_no is out of 

range of the number of operands for the current operation an assertion failure occurs. 
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Where a component of the instruction is selected for initialisation, that part of the 

instruction is selected at random from the range of possible appropriate values. A 

STORS instruction contains a single variable reference operand referencing a variable 

that can be written to, it is not possible to write to a read-only variable so this 

instruction will never be produced as a result of this function, etc. 

 
VM_INSTRUCTION_OPERATION InstructionSetProbabilistic_RandomOperation 

          (InstructionSetProbabilistic *i) 

Returns a random VM_INSTRUCTION_OPERATION from a InstructionSet 

Probabilistic normalised by InstructionSetProbabilistic_NormaliseAnd 

CalculateCumulatives. 

 
InstructionString *InstructionString_NewRandomInstructionString 

       FromInstructionSetProbabilistic(InstructionSetProbabilistic *i, 

                                       SymbolTable *symbol_table, 

                                       unsigned int length_in_instructions) 

Return an InstructionString consisting of length_in_instructions random 

instructions using the probabilities stored in the InstructionSetProbabilistic 

and the given SymbolTable. 

 
void ParseTreeEvaluationLog_InsertInitialisationSteps 

    (std::map<SYMBOL_TABLE_KEY, VM_TYPE> *starting_values, 

     SymbolTable *symbol_table, 

     ParseTreeEvaluationLog *log) 

Insert records into the ParseTreeEvaluationLog reflecting the automatic 

initialisation of SymbolTable entries with known values such as constants and input 

variables. 

 
void FitnessCase_InitialiseCases( 

      ParseTreeNode *target_program, 

        SymbolTable *symbol_table, 

        FitnessCase *fitness_case_array, 

       unsigned int  fitness_case_count) 

Construct fitness_case_count fitness cases reflecting the behaviour of the target 

program specified by target_program and symbol_table and place these into 

fitness_case_array. 

 
void VirtualMachineExecutionRegisterStatusTimeline_ 

                   PopulateFromVirtualMachineExecutionLog( 

        VirtualMachineExecutionRegisterStatusTimeline *timeline, 

                           VirtualMachineExecutionLog *log) 

Interpret a VirtualMachineExecutionLog and populate a VirtualMachine 

ExecutionRegisterStatusLine containing the status of each register before and 

after each instruction. 

 
void VirtualMachine_FitnessCase_PopulateStartingState 

       (VirtualMachine *v, SymbolTable *symbol_table, FitnessCase *c) 

Initialise a VirtualMachine by copying the starting state of the given FitnessCase. 

 



 141

bool ParseTreeEvaluationLogEntry_InstructionCorrelates 

    (ParseTreeEvaluationLogEntry *le, 

     VirtualMachineInstructionExecutionRecord *vi) 

Inspect a ParseTreeEvaluationLogEntry / VirtualMachineInstruction 

ExecutionRecord pair and return true if they reflect the same (or similar) 

instructions. This function is not used in this dissertation for reasons described in the 

main body. 

 
int qsort_GeneticLinearProgramByFitness(const void *a, const void *b) 

C language qsort compatible function for sorting an array of 

GeneticLinearProgram. 

 
GeneticLinearProgram *GeneticLinearProgram_Internal_NewProgram() 

Allocates and returns a new GeneticLinearProgram. This function is used internally 

during program construction.  

 
void GeneticLinearProgram_Internal_FreeProgram(GeneticLinearProgram *node) 

Free the memory used for storing a GeneticLinearProgram. This function is used 

internally during program construction. 

 
GeneticLinearProgram *GeneticLinearProgram_NewRandomProgram 

  (InstructionSetProbabilistic *i, 

   SymbolTable *symbol_table, 

   unsigned int  length_in_instructions) 

Create a new random GeneticLinearProgram containing an InstructionString 

consisting of length_in_instructions random instructions using the probabilities 

stored in the InstructionSetProbabilistic and the given SymbolTable. 

 
GeneticLinearProgram *GeneticLinearProgram_DuplicateProgram 

            (GeneticLinearProgram *program) 

Returns a duplicate of the given GeneticLinearProgram. 

 
GeneticLinearProgram_Crossover_Pair GeneticLinearProgram_Crossover2 

          (GeneticLinearProgram *p0, 

           GeneticLinearProgram *p1, 

           unsigned int maximum_length_in_instructions) 

Produce two child programs simultaneously by executing the crossover 

recombination operation on the two given parent programs. If the length of either 

program produced by crossover exceeds maximum_length_in_instructions, the 

transition points are reselected until this is no longer the case. 

 
void GeneticLinearProgram_DestroyProgram(GeneticLinearProgram *p) 

Free all the memory allocated to the GeneticLinearProgram and its attributes. 
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GeneticLinearProgram *GeneticLinearProgram_MutateProgram 

           _AlterRandomInstruction(GeneticLinearProgram *program, 

                                   InstructionSetProbabilistic *is, 

                                   SymbolTable *symbol_table) 

Mutate the given GeneticLinearProgram program by altering a random instruction. 

New VM_INSTRUCTION_OPERATION components will be selected according to the 

given InstructionSetProbabilistic and SymbolTable. 

 
GeneticLinearProgram *GeneticLinearProgram_MutateProgram 

          _DeleteRandomInstruction(GeneticLinearProgram *program) 

Mutate the given GeneticLinearProgram program by deleting a random instruction. 

 
GeneticLinearProgram *GeneticLinearProgram_MutateProgram 

      _InsertRandomInstruction(GeneticLinearProgram *program, 

                               SymbolTable *symbol_table, 

                               InstructionSetProbabilistic *instruction_set) 

Mutate the given GeneticLinearProgram program by inserting a random 

instruction. 

 
GeneticLinearProgram *GeneticLinearProgram_MutateProgram 

                    (GeneticLinearProgram *program, 

                     InstructionSetProbabilistic *is, 

                     SymbolTable *symbol_table) 

Mutate a GeneticLinearProgram program by performing an operation chosen from 

the previously defined operations of deletion, insertion and alteration randomly. 

 
unsigned int SortedGeneticLinearProgramPopulation_Insert 

     (SortedGeneticLinearProgramPopulation &a, GeneticLinearProgram **p) 

Insert a new program into the SortedGeneticLinearProgramPopulation, retaining 

the sorted property. This has linear complexity, but assumes that most programs have 

very high fitness, so the actual cost will be minimal as their position will be near the 

start of the insertion position search. 

 
SortedGeneticLinearProgramPopulation::iterator 

SortedGeneticLinearProgramPopulation_At 

         (SortedGeneticLinearProgramPopulation &a, unsigned int l) 

Return an iterator to the program at index l in the 

SortedGeneticLinearProgramPopulation. Linear complexity. Searches iteratively 

from the closest edge. 

 
EvolutionSystem_Parameters EvolutionSystem_Parameters_LoadFromFile 

         (const std::string &file) 

Load the plain text parameter file from the filename file into memory and return an 

instance of EvolutionSystem_Parameters populated with its values. 
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void GeneticLinearProgram_FitnessEvaluationOnTrainingSet( 

            GeneticLinearProgram *p, 

      EvolutionSystem_Parameters *param, 

                     FitnessCase *fitness_case_training_set, 

                     SymbolTable *symbol_table, 

                            bool  alert = false)  

Populate the fitness field of a GeneticLinearProgram by calculating its fitness 

against the full fitness case training set using the fitness function described in this 

dissertation. The param argument holds values such as the size of the training set. 

 
bool GeneticLinearProgram_AcceptanceTestOnTestSet( 

            GeneticLinearProgram *p, 

      EvolutionSystem_Parameters *param, 

                     FitnessCase *fitness_case_test_set, 

                     SymbolTable *symbol_table) 

Returns a bool indicating if the given GeneticLinearProgram passes all of the 

fitness cases in the test set. 

 
void EvolutionSystem_EvolveInstructionStringFromParseTree( 

                   ParseTreeNode  *target_program, 

          EvolutionSystem_Report  *output_report, 

               InstructionString **output_string, 

      EvolutionSystem_Parameters  *param, 

                            bool   reporting, 

     InstructionSetProbabilistic  *instruction_set, 

                     SymbolTable  *symbol_table, 

               InstructionString  *input_string_embryo)  

This function is the base LGP implementation function which tries to evolve a low 

level instruction string with the same semantics as expressed by the input IR given by 

the ParseTreeNode pointed to by target_program and the SymbolTable pointed to 

by symbol_table. The instruction set available to the system is given by 

instruction_set. An instance of EvolutionSystem_Report must be supplied to 

hold statistical data produced during evolution. The evolutionary system is controlled 

by the parameters given in the EvolutionSystem_Parameters instance param. If 

reporting is true, continuous status reports are printed to the standard output console 

window at intervals defined by param. If an acceptable candidate instruction string is 

found, a copy of this program will be returned by output_string. If not, 

output_string will not be altered. If the refinement model is used, the previously 

obtained InstructionString is supplied by input_string_embryo. 

 
void EvolutionSystem_Master_PrepareSymbolTableEntriesForBranchingPoints( 

       const std::string &prefix_of_current_node, 

           ParseTreeNode *target_program, 

             SymbolTable *symbol_table)  

This function augments the SymbolTable symbol_table with new symbols 

representing the intermediate values produced by evaluating the interior nodes in the 

given tree, in preparation for subprogram evolution by the ‘incremental’ method. This 

function acts recursively. The prefix_of_current_node argument supplies the 

string fragment which should appear at the start of all variables produced as a result 



 144

of considering this node; this parameter is used to assemble the new names of 

variables based on their position in the tree. 

 
void EvolutionSystem_EvolveInstructionStringFromParseTree_PerformIncrement( 

               const std::string  &prefix_of_current_node, 

                   ParseTreeNode  *target_program, 

          EvolutionSystem_Report  *output_report, 

               InstructionString **output_string, 

      EvolutionSystem_Parameters  *param, 

     InstructionSetProbabilistic  *instruction_set, 

                     SymbolTable  *symbol_table) 

The final result of this function will be the creation of an InstructionString 

containing the appended programs necessary to create the full program by 

considering partial programs and combining them. This function works by 

constructing a new parse tree program encapsulating the immediate actions of the 

root node of the given parse tree, then evolving a program that performs that action. It 

recursively evolves solutions to child programs which are then combined at the end 

of the function. 

 
void EvolutionSystem_EvolveInstructionStringFromParseTree_Incremental( 

                   ParseTreeNode  *target_program, 

          EvolutionSystem_Report  *output_report, 

               InstructionString **output_string, 

      EvolutionSystem_Parameters  *param, 

     InstructionSetProbabilistic  *instruction_set, 

                     SymbolTable  *symbol_table) 

This function is the main LGP wrapper function which tries to evolve a low level 

instruction string by the ‘incremental’ model with the same semantics as expressed 

by the input IR given by the ParseTreeNode pointed to by target_program and the 

SymbolTable pointed to by symbol_table. The instruction set available to the 

system is given by instruction_set. An instance of EvolutionSystem_Report 

must be supplied to hold statistical data produced during evolution. The evolutionary 

system is controlled by the parameters given in the EvolutionSystem_Parameters 

instance param. If reporting is true, continuous status reports are printed to the 

standard output console window at intervals defined by param. If an acceptable 

candidate instruction string is found, a copy of this program will be returned by 

output_string. If not, output_string will not be altered. 

 
void EvolutionSystem_VerifyInstructionStringFromParseTree( 

                   ParseTreeNode  *target_program, 

          EvolutionSystem_Report  *output_report, 

               InstructionString  *input_string, 

      EvolutionSystem_Parameters  *param, 

                     SymbolTable  *symbol_table) 

This function performs training and test set analysis on an InstructionString and 

determines if it passes both sets of fitness cases. This is used to verify the viability of 

composite programs produced by incremental evolution. 


