
Mathew Carr MSc. Project Specification July 1, 2010

 Page 1 of 3

Project Description

Problem to be Addressed

The development and verification of compiler software is a complex task. Various tools are available to

automate, or semi-automate, some stages in the process of generating compiler software, such as: 'lex', a tool

for the generation of lexical analyser software, and 'yacc', a tool for the generation of parser software. Genetic

programming (GP) provides a means for the automatic, unattended development or optimisation of complex

computer software, given data representative of the desired outcome of program execution. As compiler

software attempts to provide a means for program transformation in a predictable and verifiable way, genetic

programming may provide the means for the automatic induction of some or all of the functionality of a

compiler.

This project will investigate if it is possible to use GP techniques to reliably induce code in an

assembly-like language that, when executed, will have the same effect as an input program given in the form of

a parse tree. That is, to investigate if GP be used to reliably perform the code generation phase of a compiler.

Proposed Solution

An assembly-like language and virtual machine will be devised, containing instructions and architecture similar

to that found in a modern processor. A linear GP system will be implemented, working directly upon strings of

instructions written in this assembly-like language. Individuals from the population of linear programs will be

selected for recombination and mutation based upon their fitness values. Fitness values will be calculated by

automatically observing individuals' behaviour when executed in the virtual machine. Bonus scores will be

awarded to programs exhibiting desirable behaviour such as accessing the correct input registers and memory

cells, and placing correct values in correct locations. Penalty scores will be awarded to programs exhibiting

destructive or counter-productive behaviour, such as accessing or overwriting unrelated or invalid memory

cells and entering infinite loops.

It is hoped that improved programs will be produced through recombination and mutation of programs

that are observed to be well-performing, and that this process can be done with little or no intervention from a

human operator. This project will investigate methods for identifying 'well-performing' programs within this

context, and how the standard GP operations of crossover and mutation can be adapted and extended to

expedite the evolution of appropriate programs. Additional measures to promote optimised programs, such as

the use of parsimony pressure, will be investigated.

What Will be Produced

Over the course of the project I will produce a complete, functional and well-documented GP facility, with an

accompanying series of predefined code generation suites capable of automatically reproducing solutions to the

identified problem cases. These cases can then be reapplied to the GP facility to observe the evolution of

solutions comparable to those identified in the report.

Modification to Existing Proposal

The specification of this project closely matches the existing proposal, "Using GP to evolve code in a

compiler", put forward by David Jackson. The original proposal has been augmented by the definition of a

subset of compiler functionality that will be examined in detail.

Conduct of the Project

Background Research

In preparation for the project, research will be undertaken into the theoretical underpinnings of compiler

software in order to identify methods for code generation that may be applied to the GP system to assist in the

evolution of appropriate programs, such as identifying redundant sections of code. The state of the art of GP

will be examined, with a focus on research in producing GP systems directly manipulating machine code or

processor microcode to solve problems.

Mathew Carr MSc. Project Specification July 1, 2010

 Page 2 of 3

Data Required

A series of test data in the form of input parse trees and their respective expected effects upon the virtual

machine will be devised to train the GP population. This data will be sufficiently representative of the range of

possible data that could be applied to the problem and incorporate a range of complexity in both length and

instruction variety to allow us to be reasonable sure that the generated GP facility is sufficiently generalisable.

New Skills

I have very little experience in the specification, implementation and verification of compiler software; it will

be necessary to become familiar with how compilers are specified and tested for correctness in order to ensure

that the software produced during the project is suitable. In addition, I will need to gain experience in the

implementation, creation and use of GP utilities.

Research Methodology

It will be necessary to experiment with the parameters of the linear GP system and the implementations of the

operations upon the individuals in the population, based on methods within the body existing research and

consideration of the identified problem.

Software Used

It is expected that the new GP system and its associated virtual machine will be authored in the C++

programming language. This language was chosen as it is compiled, rather than interpreted, and will therefore

allow highly efficient execution necessary to meet the significant processing requirements anticipated for this

project. Compilers for the language are readily available for many platforms, which may assist the expedient

reapplication of the produced software to other hardware platforms in the future.

Statement of Deliverables

Anticipated Documentation

My report will include a detailed account of the design and creation of the software and a comprehensive guide

to its operation. Each of the cases identified within the test data will be examined in detail, and the derivation of

appropriate GP system parameters for the automatic generation of software performing the desired

transformation will be discussed.

Anticipated Software

Over the course of the project I will produce a complete, functional and well-documented GP facility, with an

accompanying series of predefined code generation suites capable of automatically reproducing solutions to the

identified problem cases. These cases can then be reapplied to the GP facility to observe the evolution of

solutions comparable to those identified in the report.

Anticipated Experiments

GP is a stochastic process and therefore experimentation will be required to determine the appropriate

parameters for the GP run; these parameters include the population size, operator rates, the implementation of

the operations upon the individuals in the population and the termination criterion. In addition, the linear GP

model may be extended with additional experimental operations or parameters as yet unattempted.

Methods of Evaluation

The specified GP system and generation suites will be evaluated on their ability to automatically generate

appropriate software to handle the identified problem cases, and the ability of the system to generalise to larger

or related problems with little interaction from a human operator.

Mathew Carr MSc. Project Specification July 1, 2010

 Page 3 of 3

Project Timetable

Week 1, 2 Background Reading and Literature Review

Underway

Week 3, 4 Project Specification

Project Specification Submission Date: End of Week 4

Week 5, 6, 7, 8 Project Design

Design Document and Presentation: During Week 9

Week 9, 10, 11, 12 Software Implementation and Testing

Week 12, 13, 14 Software Experimentation and Analysis of Results

Week 14, 15, 16 Write-up of Dissertation

 Friday September 24
th

Submission of Dissertation

