MATHEW CARR

MSc. Project:

Code Generation Through
Genetic Programming

Supervisor: David Jackson



Compiler

- Compilers translate from one language to
another

- High level (human readable) to low level
(efficiently executable)

- Almost all software is produced through
use of a compiler

Mathew Carr



Why Consider Compilers?

- Compilers are not available for
some architectures

- Where compilers are available, they
may not take advantage of certain
architecture-specific features:

Advanced instructions: SIMD, DMA, etc.

Mathew Carr



Compilation Process

- Source code - High level program
Parsing, lexical analysis

- Intermediate representation -
Parse tree, symbol table.

Code generation
- Object code - Low level program
Linking

- Executable

Mathew Carr



Code Generation

- Transformation from intermediate
representation into object code

- Highly dependent on target architecture
- Register allocation

nstruction selection
nstruction sequencing

Mathew Carr



“Calculate the mean of the values of the variables a and b
and store the result in variable d”

d=c/ 2
LOADS O, a //'load the value of variable a into r0
LOADS 1, b /l'load the value of variable b into r1
ADD 0, 0, 1 /laddthe values of rO andr1; store resultin r0
LOADV 1, 2 I/ load the direct value 2 into r1
DIVP 0, 0, 1 /ldivide value of rO by that of r1; store result in r0
STORS O, d [/ store the value of register 0 into variable d

HALT /l end program



Approach: Genetic Programming

- Output computer programs through
induction

- Automatically solves problems without
having to know the size or shape of the
solution in advance

- Requires method to determine suitability,
or ‘fitness’, of candidate solutions

Mathew Carr



How Does GP Work?

- Creation of random initial population
- Fitness of all programs calculated

- New programs produced through
recombination or alteration of ‘fit’
programs from the population

- Repeat until suitable program is found,
or continue to find ‘fitter’ programs

Mathew Carr



Linear Genetic Programming

- We want to create programs
consisting of a linear sequence of
Instructions

- Linear GP directly works upon, and
returns, linear sequences of nodes

- Similar crossover and mutation
operations

Mathew Carr



Instruction

String a

Instruction

al

Instruction

a’

Instruction

a3

Instruction

ad

Instruction

as

Instruction

a6

Instruction

a’l

Instruction

af

Instruction

a9y

New Instruction String a

Instruction

String b

Instruction

bl

Instruction

b2

Instruction

b3

Instruction

b4

Instruction

b5

Instruction

b6

Instruction

b7

Instruction

b8

New Instruction String b

Instruction

al

Instruction

b3

Instruction

b4

Instruction

b5

Instruction

bé

Instruction

af

Instruction

as

Instruction

bl

Instruction

b2

Instruction

az

Instruction

a3

Instruction

ad

Instruction

ab

Instruction

a6

Instruction

a’l

Instruction

b7

Instruction

b8

Mathew Carr



Project Approach

- Induce low level assembly-like programs
for simple register machine architecture

- Specify architecture

- Determine method to calculate fitness of
candidate solutions

- Determine method to calculate if
candidate is correct

Mathew Carr



Fithess Cases

- Purely symbolic representations of
system state are hard to work with

- Instead, work with sufficiently
representative sampling of all
possible input states

Mathew Carr



Fithess Evaluation

- Provide a real valued measure of how ‘close’ a

program is to a solution

- Consider the actions taken within the system
during execution

- Reward actions that seem productive; penalise
actions that seem counterproductive

. Solution criteria are derived from contents of
symbol table

Mathew Carr



For all a and b:

Mathew Carr



For the case wherea =11 and b = 5;
8

11 5 16 2

Mathew Carr



For the case wherea =11 and b = 5;
8

O
16 8

(=, (=)’
* 16 * 8

Mathew Carr



For the case wherea =11 and b = 5;

Program is correct if program terminates and:

The value of d is 8;
The value of ais 11;
The value of b is 5

LOADS 0, a rO =a ro=11
LOADS 1, «c rl =c ri =7

ADD o0, 1, 0 |rO=r1+r0 rO=72+11
LOADS 2, b r2=>b r2=>5
LOADS 0, a rO =a ro =11
ADD 1, 2, 0 (rl=r2+r0 r1=5+11
LOADV 0, 2 ro =2

STORS 2, d d=r2 d=>5

DIV 0, 1, 0o |rO=rl1/7r0 r0o=16/ 2

ro =7
rt =16
ro =8

Mathew Carr



For the case wherea =11 and b = 5;

Program is correct if program terminates and:
The value of d is 8;

The value of ais 11;

The value of b is 5

LOADS 0, a rO =a ro=11

LOADS 1, «c rl =c ri =7

LOADS 2, b r2=0>0 r2 =5

LOADS 0, a rO =a ro =11

ADD 1, 2, 0 |rl=r24+r0 r1=5+11 r1 =16
LOADV 0, 2 ro =2

STORS 2, d d=r2 d=>5

DIV 0, 1, o0 |rO=rl1/7r0 rOo=16/2 r0 =28

Mathew Carr



LOADS 0, a rO = a ro=11

LOADS 1, ¢ rl =c ri =7

LOADS 2, b r2 =>b r2=>5

LOADS 0, a rO =a ro =11

ADD 1, 2, 0 |rl=r24+r0 r1=5+11 r1 =16
LOADV 0, 2 ro =2

STORS 1, d d=rl d=16

LOADS 2, d r2 =d r2 =16

DIV 2, 2, 0|r2=r2/r0 r2=16/2 r2 =28
STORS 2, d d=r2 d=38

DIV 0, 1, 0 |rO=rl1/7r0 ro=16/2 r0 =28

This appears to be a viable solution program
Does it work for all fitness cases?
If so, return it as the solution

Mathew Carr



Thank you

Any questions?

Mathew Carr



