
Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 1 of 24

MATHEW CARR – MSc. Project ‘Final Presentation’ Report

Compiler Code Generation Through Genetic Programming

Aims

The aims of this project are twofold:

To investigate methods whereby Genetic Programming (GP) techniques (and in particular Linear

Genetic Programming (LGP) techniques) can be applied to achieve or expedite the code generation

phase of software compilation.

To produce a complete, functional and well-documented LGP environment to allow experiments to

be conducted. A series of test cases, in the form of input programs expressed in a high level

language, have been devised to explore the behaviour of the evolutionary system. These test cases

can be applied to the LGP system to repeat the experiments and observe evolutionary behaviour

comparable to that identified in the report.

Software Design

Low Level Target Architecture

The target architecture for the evolution of programs is a simple register machine. The machine

contains two memory areas for storage of values: a register file and a symbolically accessible

memory. All storage areas and intermediate values are of the 64-bit signed integer data type

(referred to as VM_TYPE by typedef).

The register file consists of a configurable number of general purpose registers. The symbolically

accessible memory contains an arbitrary number of cells that may be addressed by a

SYMBOL_TABLE_KEY. Both the register file and the memory are available to programs for both read

and write access at any time.

A simplified, RISC-like low level language is specified for the purposes of this project. An

instruction in the low level language consists of an operation and a number of operands whose

quantity and nature are defined by the choice of operation. This instruction set is orthogonal; any

register may be used where a register argument is expected. The following instructions are defined:

<r> indicates that the argument is a register index

<s> indicates that the argument is a SYMBOL_TABLE_KEY

<v> indicates that the argument is a VM_TYPE

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 2 of 24

 ADD <r>a, <r>b, <r>c Addition

 Calculates the sum of the values stored in registers

<r>a and <r>b and stores the result in <r>c.

 SUB <r>a, <r>b, <r>c Subtraction

 Calculates <r>a - <r>b and stores the result in <r>c.

 MUL <r>a, <r>b, <r>c Multiplication

 Calculates <r>a * <r>b and stores the result in <r>c.

 DIVP <r>a, <r>b, <r>c Protected division

 If <r>b is non-zero, calculates <r>a divided by <r>b

and stores the result in <r>c.

Else, store <r>a in <r>c.

 LOADS <r>a, <s>b Symbolic load

 Retrieves the value associated with the symbol <s>b

and stores it in <r>a.

 STORS <r>a, <s>b Symbolic store

 Stores the current value of <r>a in the memory

associated with the symbol <s>b.

 LOADV <r>a, <v>b Direct value load

 Stores the value <v>b in the register <r>a.

For example, an instruction performing addition may appear as ADD 2, 0, 1. This instruction

consists of the operation (represented by the readable mnemonic ‘ADD’), the number of the register

into which the value of the result of the addition should be placed (the ‘destination register’), and

the numbers of the registers from which the values to be used in the addition should be read (the

‘source registers’). This instruction stores into register 2 the value produced by adding the values

currently stored in registers 0 and 1.

Symbols

Within the program, symbols are always referred to in the context of a SymbolTable structure.

The SymbolTable structure associates each symbol with a SYMBOL_TABLE_KEY (unsigned 32-bit

integer). The SYMBOL_TABLE_KEY acts as a key into the SymbolTable to allow the properties of

the symbol to be accessed quickly.

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 3 of 24

Instructions

Within the program, low level language instructions are stored as instances of the structure

Instruction. An Instruction consists of a VM_INSTRUCTION_OPERATION indicating which

operation the Instruction holds, and an array of InstructionOperand holding the operands

of the instruction. An InstructionOperand can hold the index of a register, a

SYMBOL_TABLE_KEY or a direct value (VM_TYPE).

An instruction string is stored as a linked list of Instruction instances. The

InstructionString type is defined as std::list<Instruction> by typedef.

Parse Tree and Symbol Table

The source language considered in these experiments is a simple high level imperative language,

similar to C. To begin, this language will only feature sequences of statements containing arithmetic

operations between integer constants and named variables. The only data type used within the

language is the 64-bit signed integer. The exact syntax of this language is not important, however,

as this project will manipulate the parse tree intermediate representation produced during

compilation. Where a parse tree is shown in this document, high level language source code will be

shown to ease reading.

It is assumed that the parsing and lexical analysis stages of compilation have been completed

previously, and the complete results of these operations are available for use.

For the purpose of these experiments, an input program is given as a parse tree and symbol table

pair. A parse tree is a directed, pointed acyclic tree. A visualisation of a possible input program

parse tree is shown below, together with the high level language program it encapsulates.

a = b-2;

c = 3*a.

The interior nodes of the graph denote language constructs such as sequencing (represented here by

a semicolon character), assignments, branches and loops; and arithmetic operators such as addition,

subtraction, division and multiplication. The leaf nodes of the graph denote variables (represented

here by a node showing the symbolic name of the variable) or constants. Constants (such as 2 and 3

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 4 of 24

in the above program) are treated no differently than variables, other than the setting of a flag in the

symbol table.

The program expressed by this parse tree can be executed in a top-down manner. Any node can be

invoked to return the numeric value of the sub tree in the current state at the time of invocation. To

execute the program, the value of the root node is requested in the context of some given input

system state. A system state in this context refers to the values of all symbolic variables. This

system state is global and shared throughout execution of the tree. As such, the state may be altered

during execution (for example, as a result of the assignment operation), and this altered state

subsequently inspected. For sequencing nodes, the left hand side child is evaluated first, followed

by the right hand side child and this value returned. These semantics are similar to the comma

operator in C.

This tree has the effect of first calculating the value of the expression b-2 and assigning this value

to the variable a, and then calculating the value of the expression 3*a and assigning this value to c.

We may evaluate the program considering one instantiation of an input system state to produce a

single output system state. That is, numerically. We may alternatively evaluate the program

symbolically, across all input states, to provide an algebraic representation of the system state to

system state mapping given by the program.

A symbol table contains the information about the variables referred to in the input program. The

symbol table is stored internally as a mapping from unique keys (unsigned integers) to structures

containing data defining the nature of the variable.

This data includes:

• The symbolic name of the variable.

• The scoping of the variable in the context of the program. The parse tree may represent an

isolated subroutine apart from calling program. In this case, certain variables may exist only

within the scope of the subroutine.

• The constant nature of the variable.

For the purposes of this project, we consider only variables of signed 64-bit integer type.

Target Architecture

The target architecture for the evolution of programs is a simple register machine consisting of a

number of general purpose registers, capable of storing 64-bit signed integers and available to the

inserted program, and a symbolically accessible memory: storage for 64-bit signed integer values

that may be addressed by a symbolic name for read or write access. Software has been created that

allows for non-interactive or interactive (user-stepped) interpretation of programs written in the low

level language for this architecture.

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 5 of 24

A simplified, RISC-like low level language is specified for the purposes of this project. An

instruction in the low level language consists of an operation and a number of operands whose

quantity and nature are defined by the choice of operation.

For example, an instruction performing addition may appear as ADD 2, 0, 1. This instruction

consists of the operation (represented by the readable mnemonic ‘ADD’), the number of the register

into which the value of the result of the addition should be placed (the ‘destination register’), and

the numbers of the registers from which the values to be used in the addition should be read (the

‘source registers’). This instruction stores into register 2 the value produced by adding up the values

currently stored in registers 0 and 1.

Possible programs performing the operation ‘Calculate the integer mean of the values of the

variables a and b, and store the result in variable d’ are shown below in high level source language

form, parse tree form and as an instruction string written in the low level language.

c = a + b;

d = c / 2.

LOADS 0, a // load the value of variable a into register 0

LOADS 1, b // load the value of variable a into register 0

ADD 0, 0, 1 // add the values of registers 0 and 1 and store the result in register 0

LOADV 1, 2 // load the direct value 2 into register 1

DIVP 0, 0, 1 // divide (protected division) the value of r0 by the value of r1 and store the result in r0

STORS 0, d // store the value of register 0 into variable d

HALT // end program

Note that the version written in the low level language does not refer to variable c at any time

during its execution: the semantics of the program did not specify its inclusion. An optimising

compiler may produce machine code that removes the need to directly store or consider the

intermediate calculation; certain architectures provide a ‘barrel shift’ that can augment a standard

arithmetic instruction with a bitshift operation. This may only occur if it is determined that the

variable c is not required subsequently. The required information may be obtained by inspecting the

scope of variable c, defined in the symbol table.

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 6 of 24

In this project, Linear Genetic Programming (LGP) will be used to attempt to induce programs that

have the same semantics as an input program in the form of a parse tree and symbol table pair. It

will do this by first producing a random population of candidate programs in the low level

language, calculating a value representing the suitability of each program, then repeatedly

combining and modifying programs with high suitability with the aim of iteratively producing

successively more suitable programs until a program that is sufficiently suitable is generated. The

calculation of the suitability value, referred to henceforth as ‘fitness’ to mirror genetic programming

literature, will include the degree of correlation to the semantics of the input parse tree program, and

several other measures reflecting the ‘sanity’ present in the candidate programs.

Genetic Operations

Tournament selection will be used to select programs from the population for application to the

available operations. In tournament selection, N programs are randomly selected from the

population to participate in the tournament, then from this set the M programs with the highest

fitness values are passed to the operator.

The population model used in this system is a steady state model where the number of candidate

programs in the population will remain constant throughout. For each new program produced by a

genetic operation, a tournament is used to choose a random program with low fitness to be removed

from the population.

There are two operations available to the evolutionary system to manipulate candidate programs.

These actions are selected randomly according to rate parameters given to the evolutionary system.

The crossover operation combines the contents of two source instruction strings to produce two new

instruction strings, which are then inserted into the population. Transition points are randomly

placed within the two instructions. The new strings are constructed by copying instructions from

first string until the first transition point, then copying instructions from the second string starting at

the first transition point until the second transition point, then copying the remaining instructions

from the first string starting from the second transition point until the end.

 Instruction String a Instruction String b

 Instruction a1 Instruction b1

 Instruction a2 Instruction b2

 Instruction a3 Instruction b3

 Instruction a4 Instruction b4

 Instruction a5 Instruction b5

 Instruction a6 Instruction b6

 Instruction a7 Instruction b7

 Instruction a8 Instruction b8

 Instruction a9

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 7 of 24

 New Instruction String a New Instruction String b

 Instruction a1 Instruction b1

 Instruction b3 Instruction b2

 Instruction b4 Instruction a2

 Instruction b5 Instruction a3

 Instruction b6 Instruction a4

 Instruction a8 Instruction a5

 Instruction a9 Instruction a6

 Instruction a7

 Instruction b7

 Instruction b8

The effect of the mutation operation is to alter an existing instruction at random from the chosen

instruction string. One component of the instruction is chosen at random from the available

components (the number and nature of which will depend on the current operation). If an operand

component is chosen, an operand of compatible type is chosen in its place. If the operation

component is chosen, then the all components of the instruction are reinitialised.

In addition, the mutation operation may insert a new random instruction or remove an existing

instruction chosen at random from the string.

Fitness Case Construction

The first stage is to establish the semantics of the input program, as these will be used to determine

the degree of semantic correlation between the parse tree and a candidate low level language

instruction string.

As stated previously, it is assumed that the parsing and lexical analysis stages of compilation have

been fully completed. Therefore, we can assume that the symbol table contains sufficient

information to determine which variables referred to within the input program are of importance.

We can draw from the symbol table the following attributes of any given variable:

• If the variable exists purely within some limited scope, solely as a holder of intermediate

calculations, then candidate programs are permitted to freely read and write to this variable

at any time.

• If the variable exists in a scope higher than that of the parse tree, then candidate programs

are permitted to read the value of this variable, but they are not permitted to change it.

• If the variable has a value of use associated with it before execution begins.

The symbol table contains flags determining whether the value of each variable must change (as

with d in the previous example), must not change (as with a, b and, implicitly, all variables other

than c), or if it doesn’t matter (as with c).

Intuitively, it appears that it may be possible to execute the low level instruction string in a

symbolic fashion to produce an exact statement of the state to state mapping that the program

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 8 of 24

performs. This statement could then be compared with a statement describing the semantics of the

parse tree to determine the degree of semantic correlation. However, I believe that this approach

would become unworkable for all but the simplest of cases.

Instead, a sampling of the possible values of the input variables is considered. This is analogous to

compiler testing. It is believed that through a representative sampling of the input values, enough

data will be available to construct a sufficient expression of the state mapping defined by the

program. The number of samples will affect the accuracy of the expression, and therefore the

accuracy of the output program. If there are too few samples, then the resulting program may

exploit properties specific to the sample set. Increasing the number of samples will increase the time

required to calculate the fitness of a candidate program.

For each sample set of input values, a fitness case is built by evaluating the input parse tree

program. Each fitness case contains the values of the symbolic variables before execution, after

execution, and a full record of all the intermediate evaluations that took place during evaluation. In

addition, the number of calculations that were required, in total, to produce the result value is

recorded as a heuristic measure of the complexity of calculation.

Fitness Evaluation

The fitness value for a candidate is calculated as the total of the degree of semantic correlation and

additional values representing the ‘sanity’ of the candidate program, over all fitness cases.

To calculate the degree of semantic correlation, each candidate program is tested against each

fitness case in turn. A virtual machine instance is created and reset; the input symbolic variable

value set is copied from the fitness case into the variable machine symbolic variable memory, and

the execution started. When execution terminates, the final values of the target variables in the

memory of the virtual machine are compared against those from the fitness case. If the values of all

target variables are exactly the same, no penalty is applied. If the value of a variable differs, a

constant penalty is given together with a variable amount of penalty as a function of the error.

During the execution of the candidate program, a line by line record of the execution is produced.

This record contains, for each executed arithmetic instruction, the operation that was performed, the

register locations and values of the operands used and the register location and value produced as a

result. For symbolic loads, only the destination register location and value is stored. It is possible to

perform some analysis of the program without this record, but this may become complicated if

conditional or jumping instructions are applied. With the introduction of the fitness cases as fixed

points in the input space, it makes sense to continue in this vein by analysing the exact actions taken

as a result of these input sets.

The complete record allows for the construction of a timeline showing the values of the registers

after each instruction execution. If the registers are not reset to a known value before execution

begins, this record shows which registers hold determinate values (which may be assumed to be of

some use), or indeterminate garbage values (which will not be the same between executions, and

therefore should not be relied upon in the output program).

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 9 of 24

Fitness bonuses and penalties are activated during analysis of the behaviour of the candidate

program. These bonuses are designed to ‘coax’ the evolution of candidate programs towards those

which a human programmer would consider productive.

The following productive behaviour is rewarded:

• Reading the value of a symbolic variable.

• Writing to the value of a variable that may change during execution.

• Writing to the value of a variable that must change during execution.

• Reading from a register whose value is determinate at the time of reading.

• Performing a calculation that results in a value that was encountered during construction of

the corresponding fitness case. An added bonus is applied if the low level instruction

correlates to the construct in the parse tree that was used.

The following counterproductive behaviour is penalised:

• Writing to a register and never subsequently reading it.

• Writing to a symbolic variable (other than one designated as an output) and never

subsequently reading it.

• Writing to a register twice in succession without reading it in the interval.

• Reading from a register containing an indeterminate value.

• Performing a calculation upon indeterminate values.

• Writing an indeterminate value to any register.

• Writing an indeterminate value to any symbolic variable.

It is hypothesised that the crossover operation will combine programs that are correct ‘up to a point’

with genetic material from elsewhere to produce child programs that provide further functionality

than either of their parents. It is also hypothesised that the mutation operations will act to ‘repair’

programs by removing or rewriting counterproductive instructions in programs, hence increasing

their suitability.

The specification of a large number of fitness modifiers is intended to provide a more gradual

fitness landscape. If only the error in the values of target variables is considered, the mapping from

input candidate program space will be discontinuous. In such a space, many programs will share the

same fitness value, and the evolutionary system will be able to offer little improvement.

With the above modifiers, there is the risk that the system may produce a program that calculates a

useful value at some point during execution, and then attempt to improve such a program by

repeating the segment that triggers the reward, resulting in a program that does nothing more than

calculate the same (albeit useful, or even necessary) value multiple times. Given time, such

programs may dominate the candidate program population. To prevent this, the system can be

configured to allow these rewards to be awarded only finitely many times per action, or per

expected appearance of a result value. The complexity heuristic is designed so that a candidate

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 10 of 24

program that correctly implements a multiple stage calculation is deemed to be more suitable than a

candidate program that performs a simple calculation multiple times.

A ‘hit’ is recorded for a given fitness case if the resulting value for each variable is equal between

the resulting state of the virtual machine memory after execution has terminated and the final state

of the parse tree evaluation. If a ‘hit’ is recorded for each fitness case in the training set, the

candidate program is tested against each fitness case in the test set. If a ‘hit’ is recorded for all

fitness cases in the test set, the candidate program is judged to be a satisfactory solution: the

evolutionary system terminates and returns the candidate program.

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 11 of 24

Experiment Design

Summary

The aim of this project is to investigate methods whereby Linear Genetic Programming techniques

can be applied to achieve or expedite code generation.

Two different methods of applying LGP are considered in this project, ‘standard’ and ‘incremental’.

A ‘solution program’ is a program (a sequence of instructions in the low level language) which has

the same semantics as an input program given in the form of a parse tree.

In the ‘standard’ method, the evolution system is used to attempt to evolve a single, complete

solution program expressing the same semantics as the input program. This process is guided by the

fitness metric described previously.

In the ‘incremental’ method, the input program is mechanically transformed into a series of smaller

programs that, when executed sequentially, have the same semantics as the complete program. A

solution program for each of these subprograms is evolved in turn, and these are concatenated to

produce a solution to the input program.

For example, consider the complex program shown below:

d = b + c;

e = b – c;

a = d * e;

This program is transformed by the ‘incremental’ method by taking each interior node in turn and

transforming these into isolated, smaller programs. The interior nodes furthest down the graph are

considered first (ie. the program fragments with the highest precedence).

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 12 of 24

Here, the transformation begins with the + node in the lower left of the graph. This is extracted into

a separate program with an assignment node at its root, a new temporary variable as its left child,

and the extracted program as its right child. The extracted subtree from the original program is

replaced with a node referencing the same temporary variable. It can be seen that executing the new

subprogram followed by the altered program does not result in a change in semantics if the

temporary variable is not considered to be a critical part of the program; this variable is added to the

symbol table as an intermediate variable.

X = b + c

d = X;dddd

e = b - c;

a = d * e;

The produced program fragment and the resulting modified program after the first extraction

X = b + c Y = (d = X)

Y; dddd

e = b - c;

a = d * e;

The produced program fragments and the resulting modified program after the second extraction

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 13 of 24

This process continues until a number of subprograms equal to the number of interior nodes in the

original program have been created.

The evolutionary system is then tasked with evolving solution programs to each of these

subprograms in turn, and then concatenating the resulting solutions into a composite solution

program which will have the same semantics as the original input program.

I hypothesise that, with increasing input program complexity, evolving a large number of smaller

programs using the ‘incremental’ method will result in a considerably lower processor time

requirement would be required using the ‘standard’ method.

An additional stage of processing has been proposed to investigate the ability of LGP to improve

solution programs that have already been found.

The ‘refinement’ stage occurs after a solution program has been found by the evolutionary system.

A new population of random instruction strings is produced, with a predefined fraction of the

population initialised as copies of the solution program. The termination criterion of this new

system is set to return the best-of-run program after a predefined number of new candidate solution

creations. The remaining parameters of the evolutionary system, such as evolutionary system

parameters and instruction set, remain unchanged.

The evolutionary system will attempt to breed fitter programs and, given that solution programs are

already present in the genetic population, these fitter programs will most likely be modified copies

of the solution programs improved by application of the genetic operations.

Measurements

Two measures are used in this project to evaluate the result of the evolutionary methods.

For a given input program and set of evolution parameters, Computational Effort (EI) is an

empirical measure of the difficulty of evolving an appropriate solution program using those

parameters. This value is the expected minimum number of instructions that must be considered to

evolve a solution with 99% probability of success. It is similar to the Computational Effort (E)

defined by Koza [koza], except we consider the number of instructions rather than the number of

candidate solutions.

This different measure is required to compare the difficulty of evolving solutions using the

‘standard’ method and the ‘incremental’ method.

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 14 of 24

The following ten input programs are specified:

Program A01:

Assignment of a single constant to a variable

a = 3

Output: a

Constant: 3

Program A02:

Assignment of two constants to two variables

a = 234;

b = 1056

Output: a, b

Constant: 234, 1056

Program B01:

Simple calculation; two input variables one

output variable

a = b + c

Input: b, c

Output: a

Program B02:

Progressively more complex calculation

a = b – (c + d)

Input: b, c, d

Output: a

Program B03:

Complex calculation involving a constant

a = (18 * (c – d)) + b

Input: b, c, d

Output: a

Constant: 18

Program B04:

Complex calculation with division

a = ((c – 90) * (b + d)) / e

Input: b, c, d, e

Output: a

Constant: 90

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 15 of 24

Program C01:

Calculation involving intermediate variable

b = c + d;

a = b * e

Input: c, d, e

Output: a

Intermediate: b

Program D01:

Calculation involving intermediate variables;

optimisations possible (a = 2*b)

d = b + c;

e = b – c;

a = d + e

Input: b, c

Output: a

Intermediate: d, e

Program D02:

Calculation involving intermediate variables;

difference of two squares (a = b*b – c*c)

d = b + c;

e = b – c;

a = d * e

Input: b, c

Output: a

Intermediate: d, e

Program D03:

Complex calculation involving intermediate

variables

i1 = ((b + c) – d);

i2 = ((b – c) + d);

a = i1 * i2

Input: b, c, d

Output: a

Intermediate: i1, i2

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 16 of 24

The complexity of the required calculations increases with each program. With this increasing

complexity, additional opportunities for optimisation become available, such as the omission of

unnecessary calculations, or the ‘folding’ of intermediate calculations into the program (hence

obviating the need to store and load from variables).

For each of these input programs, evolve.exe has been used to calculate two primary metrics:

‘Computational Effort’ and the distribution of solution program lengths.

The ‘Computational Effort’ (EI), for a given program, evolutionary system parameter set and

instruction set, is the minimum number of low level language instructions that must be considered

to be able to evolve a solution program with 99% probability of success. When a new candidate

instruction string is created by any method, its length in instructions is tallied as ‘considered’. It is

an adaptation of the Computational Effort (E) measure used by Koza in (Koza, 1992), where the

number of complete candidate solutions is used. A measure of required program quanta (LISP

program nodes in the case of the S-Expressions used by Koza) was proposed by Koza, but was not

implemented due to insufficient processing capacity and other factors.

EI is used as an empirical measure of the difficulty of evolving a solution program: a higher EI

indicates that more processing time is required to evolve a solution. For a series of programs of

increasing complexity, EI can be used to identify trends in processing requirements. EI is calculated

as follows:

Koza suggests that multiple independent runs of the evolutionary system should be attempted to

minimize the effect of premature population convergence to a sub-optimal solution. Over a large

number of runs (200 in this project), we measure the number of instruction considered to evolve

each solution program. If a run does not produce a solution program within the maximum number

of allowed creations, that run is aborted.

These measurements are then collected to compute the cumulative probability P(i) of a solution

program being produced as a function any given number of instruction considerations i. The

probability of producing a solution program at least once in R runs can be calculated as

1 – (1 – P(i))
R
. If the desired probability of success z is fixed at a high value, here 99%, then the

number of required runs can be calculated by: (where the brackets denote the ceiling function)










−

−
=

))(1log(

)1log(
),(

iP

z
izR

This function defines thresholds where with increasing P(i), the number of required runs decreases.

For example, if P(i) is 0.68 then four independent runs are required; if P(i) is 0.78 then three

independent runs are required and if P(i) is 0.90 then two independent runs are required.

Multiplying R(z, i) by i gives the total number of instructions that must be considered if each run is

aborted after considering i instructions. EI is the minimum value of i . R(z, i) over all i for z = 99%.

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 17 of 24

This can be visualised in a performance curve as shown below:

In this graph, the cumulative probability P(i) is shown as the curve rising from left to right. The

required number of instruction considerations i . R(z, i) is shown as the heavier curve generally

falling from left to right. As the cumulative probability increases beyond the thresholds given by the

R(z, i) function, the number of independent runs necessary to produce a solution program decreases,

giving the sawtooth nature to the i . R(z, i) curve. This curve hits a minimum at i = 404000, where

four runs are necessary, giving an EI value of 1616000.

For the ‘standard’ method, EI is calculated as above over 200 runs with z = 99%. For the

‘incremental’ method, 200 attempts at evolving the input program are used, with the sum of the EI

values for each subprogram taken as the EI value for that attempt. It is not likely that EI values for a

given input program are directly comparable between the two methods, but the trends detectable

when considering a series of successively more complex programs are of value. Computational

effort is not considered where the refinement operation is applied.

The second metric used to evaluate the evolutionary methods is the distribution of solution program

lengths.

For both the ‘standard’ and the ‘incremental’ methods, the evolutionary system has been used to

develop 200 solution programs for each input program. For each of these 200 solution programs,

the refinement operation has been applied 5 times to produce a collection of 1000 solution

programs. The distribution of solution program lengths within these sets can be used to gauge.

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 18 of 24

A simple tree walking algorithm has been developed capable of mechanically generating low level

code given an input program in the form of a parse tree. The following psuedocode algorithm is

used to construct instruction strings:

 TreeWalkingCompiler(node, register)

 IF node is interior node

 IF node is semicolon

 TreeWalkingCompiler(left_child, register)

 TreeWalkingCompiler(right_child, register)

 ELSE IF node is assignment

 TreeWalkingCompiler(right_child, register)

 output [STORS register left_child]

 ELSE IF node is calculation (+,-,*,÷)

 TreeWalkingCompiler(left_child, register)

 TreeWalkingCompiler(right_child, register + 1)

 output [calc register register+1]

 ENDIF

 ELSE

 output [LOADS register left_child]

 ENDIF

 END

This code generator is capable of generating code for all of the defined input programs; it requires a

virtual machine register file of the same length as the depth of the most complex calculation (three

registers for programs B02, B03 and B04).

This code generator does not perform any kind of analysis or optimisation on the input program.

For example, when processing programs C01, D01, D02 and D03 it will generate code that accesses

the intermediate variables, and for programs D01, D02 and D03 it will generate code that explicitly

performs every calculation as specified.

This tree walking algorithm will be applied to each of the defined programs to produce a predictable

program length for comparison with those produced by the evolutionary methods. A fully optimised

‘perfect’ solution as produced by a skilled human programmer has also been produced.

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 19 of 24

Analysis of Results

Across all programs, for the ‘incremental’ method, the required computational effort appears to

scale linearly with the number of parse tree nodes in the input program. Increasing the ‘depth’ of the

calculation, considering programs B01 to B04, does not seem to have a pronounced additional

effect on the computational effort. This may be because all of the program fragments are of the

same shape, and of similar difficulty; commutative operators such as addition or multiplication

would be easier to evolve than non-commutative operations such as subtraction, division or

assignment due to there being fewer possible programs within the program space that have the

desired effect.

For the ‘standard’ method, required computational effort appears to scale exponentially with

increasing calculation depth and increasing numbers of statements (semicolons).

Program B04 has exceptionally high values for computational effort for both the ‘standard’ and

‘incremental’ methods. Program B04 contains the greatest depth of calculation. The primary

stumbling-block appears to be the evolution of the division operation. The following graph shows

the performance curves for the evolution of the various subprograms created when Program B04 is

treated by the ‘incremental’ method.

Fragments 2 and 3 appear to be the easiest to evolve a solution for: they consist of a single

commutative arithmetic operation followed by an assignment. Fragments 1 and 5 appear to be the

second easiest to solve; they consist of a single non-commutative operation followed by an

assignment. Fragment 4 is the hardest fragment to solve, and contributes 1110000 of the 1595500

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 20 of 24

instructions of the EI value. This may be because the inclusion of the integer protected division

operation in a program will often result in very small output values being produced due to the input

values all lying within a small input range. Such programs may be difficult to improve using the

genetic operations, as many of the possible operations will not have a noticeable productive effect.

Where both the ‘standard’ and ‘incremental’ methods are able to evolve a solution program within a

reasonable amount of time, it appears that the solution produced by the ‘standard’ method will be of

shorter length by approximately 30% - 60%.

When refinement is applied, the evolutionary system is able to reduce the mean solution program

length by 60% - 80% for programs produced by the ‘standard’ method, and approximately 20% for

programs produced by the ‘incremental’ method.

For all programs except B04 and D03, ‘standard’ with the refinement operation was able to produce

at least one solution that is ‘perfect’ given the available instructions. For program D03, ‘standard’

with the refinement operation was able to produce at least one solution that was better than the

unoptimised tree walking algorithm.

For programs A01, A02, B01 and D01, ‘incremental’ with the refinement operation was able to

produce at least one solution that is ‘perfect’ given the available instructions. For all other

programs, the minimum solution program length was greater than that of the unoptimised tree

walking algorithm. These long programs may be the result of the evolutionary system being unable

to remove intermediate variables introduced during the fragmentation process.

From these results, it appears that the ‘standard’ method is capable of producing optimal programs

in many circumstances, but only if significant amounts of processor time are dedicated to the

problem. If ‘any solution’ is acceptable, then the ‘incremental’ method is capable of producing such

a program quickly and rapidly. However, the only advantage that the ‘incremental’ method has over

the tree walking algorithm is that the tree walking algorithm does not take into account the finite

register file in the virtual machine; it may simply exhaust the register file and crash.

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 21 of 24

Evaluation

I have successfully implemented the program as described in the Design section of this document.

The evolutionary system prototype software is capable of evolving low level instruction string

programs that are semantically equivalent to short sequences of statements in the high level source

code language. In some cases, the system is capable of evolving instruction strings of optimal

quality given the instruction set. However, this process is time consuming and processor intensive

due to the evaluation of many thousands of candidate programs against hundreds of fitness cases.

No guarantee may be made that the process will succeed at all, due to the probabilistic nature of the

linear genetic programming system.

The incremental approach described in the previous report has been implemented and shown to be

superior in terms of processor requirements, but inferior when the lengths of the output programs

are considered.

Due to limited available processor time, the EI values for programs B03, B04 and D03 using the

‘standard’ method may be artificially high due to the extreme unlikelihood of finding solution

programs.

It was necessary to alter the method for calculating the distribution of solution program lengths for

Programs B04, C01, D01, D02 and D03 due to the extreme unlikelihood of finding a solution

program. It was decided to perform 20 refinements on each solution program rather than 5 as

normal. This was chosen as a reasonable compromise to dedicating significant time to finding

multiple unrefined programs, as it is the distribution of program lengths after refinement that is

under examination, so additional refinements of the same raw program will suffice, given that the

raw program was produced in the correct manner.

Future Work

The experiments undertaken as part of this project have all used the same set of evolutionary system

parameters. A more complete analysis of the problem would consider the effects of altering the

various parameters to the evolutionary system, such as the maximum number of new creations, the

maximum length of a candidate program produced through crossover, the maximum number of new

creations available to the refinement stage and the fraction of raw solution copies in the genetic

population during the refinement stage.

This project has only focused on simple lists of statements with no control structures. Additional

programs may be investigated containing IF statements, WHILE and FOR loops, and other

constructs manipulating program flow.

The memory model used in this project is a simple symbolic associative memory. It is possible to

extend the work attempted in this project to low level machines with indexed memory.

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 22 of 24

Result Data

Computational effort EI values:

 ‘Standard’ ‘Incremental’ No. internal nodes No. nodes

PROGRAM A01 52000 180000 1 3

PROGRAM A02 432000 359000 3 7

PROGRAM B01 203000 250500 2 5

PROGRAM B02 1616000 404500 3 7

PROGRAM B03 16590000 454500 4 9

PROGRAM B04 ------------ 1595500 5 11

PROGRAM C01 1816000 538000 5 11

PROGRAM D01 450000 787000 8 17

PROGRAM D02 4842000 845500 8 17

PROGRAM D03 619406000 1031000 10 21

The ‘standard’ value for Program B04 was incalculable due to exceptionally low probability of

success for any number of instruction considerations.

Distribution of solution program lengths:

PROGRAM A01 Minimum Maximum Mean Median Mode

‘Standard’ 3 95 22.42 21 6

‘Incremental’ 3 44 15.235 15 16

‘Standard with refinement’ 2 2 2 2 2

‘Incremental with refinement’ 2 2 2 2 2

PROGRAM A02 Minimum Maximum Mean Median Mode

‘Standard’ 5 63 21.105 19 12

‘Incremental’ 14 89 39.09 37.5 33

‘Standard with refinement’ 4 60 6.218 4 4

‘Incremental with refinement’ 4 9 4.008 4 4

PROGRAM B01 Minimum Maximum Mean Median Mode

‘Standard’ 4 46 14.09 13 11

‘Incremental’ 11 39 22.375 22 19

‘Standard with refinement’ 4 26 5.566 4 4

‘Incremental with refinement’ 4 30 6.991 6 4

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 23 of 24

PROGRAM B02 Minimum Maximum Mean Median Mode

‘Standard’ 9 46 21.545 21 17

‘Incremental’ 17 60 33.305 33 35

‘Standard with refinement’ 6 37 10.864 10 7

‘Incremental with refinement’ 9 44 21.902 21 20

PROGRAM B03 Minimum Maximum Mean Median Mode

‘Standard’ 15 47 28.51 28 26

‘Incremental’ 26 63 44.165 44 43

‘Standard with refinement’ 8 37 15.069 14 12

‘Incremental with refinement’ 15 56 35.436 35 37

PROGRAM B04 Minimum Maximum Mean Median Mode

‘Standard’ 29 62 41 38 38

‘Incremental’ 36 85 56.65 56 60

‘Standard with refinement’ 12 27 18.7 16.5 14

‘Incremental with refinement’ 28 81 48.968 48 46

Program B04 was only run for 5 independent runs (each with 20 refinement attempts) using the

‘standard’ (with refinement) model due to the unlikelihood of finding 200 solution programs within

a reasonable amount of time.

PROGRAM C01 Minimum Maximum Mean Median Mode

‘Standard’ 19 27 22.6 23 N/A

‘Incremental’ 30 83 51.51 50 49

‘Standard with refinement’ 6 21 9.27 7 6

‘Incremental with refinement’ 10 68 34.654 34 32

Program C01 was only run for 5 independent runs (each with 20 refinement attempts) using the

‘standard’ (with refinement) model due to time constraints.

PROGRAM D01 Minimum Maximum Mean Median Mode

‘Standard’ 17 30 21.2 19 N/A

‘Incremental’ 54 119 82.84 82.5 78

‘Standard with refinement’ 3 18 6.62 3 3

‘Incremental with refinement’ 3 95 58.73 60 63

Program D01 was only run for 5 independent runs (each with 20 refinement attempts) using the

‘standard’ (with refinement) model due to time constraints.

Mathew Carr MSc. Project ‘Final Presentation’ Report September 2, 2010

 Page 24 of 24

PROGRAM D02 Minimum Maximum Mean Median Mode

‘Standard’ 20 32 27.6 30 32

‘Incremental’ 54 111 81.91 80 79

‘Standard with refinement’ 6 21 11.41 12 6

‘Incremental with refinement’ 25 91 59.604 59 61

Program D02 was only run for 5 independent runs (each with 20 refinement attempts) using the

‘standard’ (with refinement) model due to time constraints.

ROGRAM D03 Minimum Maximum Mean Median Mode

‘Standard’ 29 44 37.6 42 N/A

‘Incremental’ 78 147 103.935 103 103

‘Standard with refinement’ 10 39 21.93 22 14

‘Incremental with refinement’ 54 129 83.68 83 79

Program D03 was only run for 5 independent runs (each with 20 refinement attempts) using the

‘standard’ (with refinement) model due to time constraints.

Solution program lengths in instructions when using non genetic methods:

 Human Programmer

(optimised)

Tree Walking Compiler

(unoptimised)

PROGRAM A01 2 2

PROGRAM A02 4 4

PROGRAM B01 4 4

PROGRAM B02 6 6

PROGRAM B03 8 8

PROGRAM B04 10 10

PROGRAM C01 6 8

PROGRAM D01 3 12

PROGRAM D02 6 12

PROGRAM D03 8 16

