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Compiler

- Compilers translate from one language to
another

- High level (human readable) to low level
(efficiently executable)

- Almost all software is produced through
use of a compiler
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Why Consider Compilers?

- Compilers are not available for
some architectures

- Where compilers are available, they
may not take advantage of certain
architecture-specific features:

Advanced instructions: SIMD, DMA, etc.
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Compilation Process

- Source code - High level program
Parsing, lexical analysis

- Intermediate representation -
Parse tree, symbol table.

Code generation
- Object code - Low level program
Linking

- Executable
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Code Generation

- Transformation from intermediate
representation into object code

- Highly dependent on target architecture
- Register allocation

nstruction selection
nstruction sequencing
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“Calculate the mean of the values of the variables a and b
and store the result in variable d”

d=c/ 2
LOADS O, a //'load the value of variable a into r0
LOADS 1, b /l'load the value of variable b into r1
ADD 0, 0, 1 /laddthe values of rO andr1; store resultin r0
LOADV 1, 2 I/ load the direct value 2 into r1
DIVP 0, 0, 1 /ldivide value of rO by that of r1; store result in r0
STORS O, d [/ store the value of register 0 into variable d

HALT /l end program



Approach: Genetic Programming

- Output computer programs through
induction

- Automatically solves problems without
having to know the size or shape of the
solution in advance

- Requires method to determine suitability,
or ‘fitness’, of candidate solutions
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How Does GP Work?

- Creation of random initial population
- Fitness of all programs calculated

- New programs produced through
recombination or alteration of ‘fit’
programs from the population

- Repeat until suitable program is found,
or continue to find ‘fitter’ programs
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Linear Genetic Programming

- We want to create programs
consisting of a linear sequence of
Instructions

- Linear GP directly works upon, and
returns, linear sequences of nodes

- Similar crossover and mutation
operations
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Project Approach

- Induce low level assembly-like programs
for simple register machine architecture

- Specify architecture

- Determine method to calculate fitness of
candidate solutions

- Determine method to calculate if
candidate is correct
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Fithess Cases

- Purely symbolic representations of
system state are hard to work with

- Instead, work with sufficiently
representative sampling of all
possible input states

Mathew Carr



Fithess Evaluation

- Provide a real valued measure of how ‘close’ a

program is to a solution

- Consider the actions taken within the system
during execution

- Reward actions that seem productive; penalise
actions that seem counterproductive

. Solution criteria are derived from contents of
symbol table
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For all a and b:
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For the case wherea =11 and b = 5;
8

11 5 16 2
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For the case wherea =11 and b = 5;
8

O
16 8

(=, (=)’
* 16 * 8
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For the case wherea =11 and b = 5;

Program is correct if program terminates and:

The value of d is 8;
The value of ais 11;
The value of b is 5

LOADS 0, a rO =a ro=11
LOADS 1, «c rl =c ri =7

ADD o0, 1, 0 |rO=r1+r0 rO=72+11
LOADS 2, b r2=>b r2=>5
LOADS 0, a rO =a ro =11
ADD 1, 2, 0 (rl=r2+r0 r1=5+11
LOADV 0, 2 ro =2

STORS 2, d d=r2 d=>5

DIV 0, 1, 0o |rO=rl1/7r0 r0o=16/ 2

ro =7
rt =16
ro =8
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For the case wherea =11 and b = 5;

Program is correct if program terminates and:
The value of d is 8;

The value of ais 11;

The value of b is 5

LOADS 0, a rO =a ro=11

LOADS 1, «c rl =c ri =7

LOADS 2, b r2=0>0 r2 =5

LOADS 0, a rO =a ro =11

ADD 1, 2, 0 |rl=r24+r0 r1=5+11 r1 =16
LOADV 0, 2 ro =2

STORS 2, d d=r2 d=>5

DIV 0, 1, o0 |rO=rl1/7r0 rOo=16/2 r0 =28
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LOADS 0, a rO = a ro=11

LOADS 1, ¢ rl =c ri =7

LOADS 2, b r2 =>b r2=>5

LOADS 0, a rO =a ro =11

ADD 1, 2, 0 |rl=r24+r0 r1=5+11 r1 =16
LOADV 0, 2 ro =2

STORS 1, d d=rl d=16

LOADS 2, d r2 =d r2 =16

DIV 2, 2, 0|r2=r2/r0 r2=16/2 r2 =28
STORS 2, d d=r2 d=38

DIV 0, 1, 0 |rO=rl1/7r0 ro=16/2 r0 =28

This appears to be a viable solution program
Does it work for all fitness cases?
If so, return it as the solution
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Thank you

Any questions?
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