
Mathew Carr

MSc. Project:

Code Generation Through
Genetic Programming

FINAL PRESENTATION

Supervisor: David Jackson

MATHEW CARR

Mathew Carr

Aims of Project

• Investigate methods where Linear Genetic
Programming techniques can be applied
to achieve or expedite code generation

• Produce software allowing experiments
to be conducted

Mathew Carr

Methods
• ‘Standard’

– Evolution of a single solution program with
the same semantics as the input program

• ‘Incremental’
– Division of input program into smaller
subprograms

– Evolution of solution programs for each
subprogram

– Concatenation of partial solutions into
complete solution

Mathew Carr

c = a + b;

d = c / 2

“Calculate the mean of the values of the variables a and b
and store the result in variable d”

LOADS 0, a // load the value of variable a into r0

LOADS 1, b // load the value of variable b into r1

ADD 0, 0, 1 // add the values of r0 and r1; store result in r0

LOADV 1, 2 // load the direct value 2 into r1

DIVP 0, 0, 1 // divide value of r0 by that of r1; store result in r0

STORS 0, d // store the value of register 0 into variable d

HALT // end program

Mathew Carr

Evolve Instruction String From Parse Tree

Mathew Carr

‘Incremental’

d = b + c;

e = b - c;

a = d * e

Mathew Carr

‘Incremental’

Mathew Carr

‘Incremental’

Mathew Carr

Evolutionary Program Refinement

• Final stage of processing after program is found

• Attempt to improve input program using the
same LGP operations as before

• Fraction of the initial population is duplicates of
the previously evolved solution program
– Fitness: primarily based on program length

• Terminate after a fixed number of program
creations

Mathew Carr

Metrics Used

• Ten simple source programs:

• ‘Computational Effort’
– Minimum number of instructions required to
produce solution program with 99%
probability

• ‘Program Length’
– Distribution of lengths of solution programs

– ‘Cost’ of solution program

Mathew Carr

Computational Effort

• Allows for comparison of apparent
difficulty between ‘incremental’ and
‘standard’ methods.

• Higher value indicates more time is
needed to produce a solution program
using this method

Mathew Carr

Computational Effort

• Incremental appears to scale linearly with
number of internal nodes
– Only has to solve small programs: fewer goals

– Small symbol table: fewer possible
instructions

• Standard appears to scale exponentially
with number of internal nodes
– Many constraints on what makes a valid
program: many goals

– Many genetic operations act destructively

Mathew Carr

Program Length

• Standard

• Incremental

• Standard with refinement

• Incremental with refinement

• Non-optimising, tree walking compiler
algorithm

• Tree walking compiler algorithm with
refine

Mathew Carr

Program Length

• Standard approach produces shorter
programs; half the length of those
produced by incremental

– At a cost of greatly increased
computational effort

• Tree walking algorithm produces
superior programs under all cases

Mathew Carr

Program Length, Refinement

• Refinement generally reduces program
length by 50%

• Programs produced by standard are more
easily refined
– Altering complex programs requires
intermediate states with lower fitness

• Capable of producing optimal programs

Mathew Carr

d = b + c;

e = b - c;

a = d + e

Mathew Carr

Limitations of Project

• No powerful instructions

– Trivial translation by tree walking algorithm

• Short programs

– Few opportunities for optimisation

• Sufficient register file

– Advantage to tree walking algorithm

Mathew Carr

Thank you

Any questions?

