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MATHEW CARR – MSc. Project ‘Final Presentation’ Report 

Compiler Code Generation Through Genetic Programming 

 

Aims 

The aims of this project are twofold: 

 

To investigate methods whereby Genetic Programming (GP) techniques (and in particular Linear 

Genetic Programming (LGP) techniques) can be applied to achieve or expedite the code generation 

phase of software compilation. 

 

To produce a complete, functional and well-documented LGP environment to allow experiments to 

be conducted. A series of test cases, in the form of input programs expressed in a high level 

language, have been devised to explore the behaviour of the evolutionary system. These test cases 

can be applied to the LGP system to repeat the experiments and observe evolutionary behaviour 

comparable to that identified in the report. 

 

Software Design 

Low Level Target Architecture 

The target architecture for the evolution of programs is a simple register machine. The machine 

contains two memory areas for storage of values: a register file and a symbolically accessible 

memory. All storage areas and intermediate values are of the 64-bit signed integer data type 

(referred to as VM_TYPE by typedef). 

 

The register file consists of a configurable number of general purpose registers. The symbolically 

accessible memory contains an arbitrary number of cells that may be addressed by a 

SYMBOL_TABLE_KEY. Both the register file and the memory are available to programs for both read 

and write access at any time. 

  

A simplified, RISC-like low level language is specified for the purposes of this project. An 

instruction in the low level language consists of an operation and a number of operands whose 

quantity and nature are defined by the choice of operation. This instruction set is orthogonal; any 

register may be used where a register argument is expected. The following instructions are defined: 

 

<r> indicates that the argument is a register index 

<s> indicates that the argument is a SYMBOL_TABLE_KEY 

<v> indicates that the argument is a VM_TYPE 
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 ADD   <r>a, <r>b, <r>c Addition  

  Calculates the sum of the values stored in registers 

<r>a and <r>b and stores the result in <r>c. 

 

    

 SUB   <r>a, <r>b, <r>c Subtraction  

  Calculates <r>a - <r>b and stores the result in <r>c.  

    

 MUL   <r>a, <r>b, <r>c Multiplication  

  Calculates <r>a * <r>b and stores the result in <r>c.  

    

 DIVP  <r>a, <r>b, <r>c Protected division  

  If <r>b is non-zero, calculates <r>a divided by <r>b 

and stores the result in <r>c. 

Else, store <r>a in <r>c. 

 

    

 LOADS <r>a, <s>b Symbolic load  

  Retrieves the value associated with the symbol <s>b 

and stores it in <r>a. 

 

    

 STORS <r>a, <s>b Symbolic store  

  Stores the current value of <r>a in the memory 

associated with the symbol <s>b. 

 

    

 LOADV <r>a, <v>b Direct value load  

  Stores the value <v>b in the register <r>a.  

    

 

For example, an instruction performing addition may appear as ADD 2, 0, 1. This instruction 

consists of the operation (represented by the readable mnemonic ‘ADD’), the number of the register 

into which the value of the result of the addition should be placed (the ‘destination register’), and 

the numbers of the registers from which the values to be used in the addition should be read (the 

‘source registers’). This instruction stores into register 2 the value produced by adding the values 

currently stored in registers 0 and 1.  

 

Symbols 

Within the program, symbols are always referred to in the context of a SymbolTable structure. 

The SymbolTable structure associates each symbol with a SYMBOL_TABLE_KEY (unsigned 32-bit 

integer). The SYMBOL_TABLE_KEY acts as a key into the SymbolTable to allow the properties of 

the symbol to be accessed quickly. 
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Instructions 

Within the program, low level language instructions are stored as instances of the structure 

Instruction. An Instruction consists of a VM_INSTRUCTION_OPERATION indicating which 

operation the Instruction holds, and an array of InstructionOperand holding the operands 

of the instruction. An InstructionOperand can hold the index of a register, a 

SYMBOL_TABLE_KEY or a direct value (VM_TYPE). 

 

An instruction string is stored as a linked list of Instruction instances. The 

InstructionString type is defined as std::list<Instruction> by typedef. 

 

Parse Tree and Symbol Table 

The source language considered in these experiments is a simple high level imperative language, 

similar to C. To begin, this language will only feature sequences of statements containing arithmetic 

operations between integer constants and named variables. The only data type used within the 

language is the 64-bit signed integer. The exact syntax of this language is not important, however, 

as this project will manipulate the parse tree intermediate representation produced during 

compilation. Where a parse tree is shown in this document, high level language source code will be 

shown to ease reading. 

 

It is assumed that the parsing and lexical analysis stages of compilation have been completed 

previously, and the complete results of these operations are available for use. 

 

For the purpose of these experiments, an input program is given as a parse tree and symbol table 

pair. A parse tree is a directed, pointed acyclic tree. A visualisation of a possible input program 

parse tree is shown below, together with the high level language program it encapsulates. 

 

 
 

a = b-2; 

c = 3*a. 

 

The interior nodes of the graph denote language constructs such as sequencing (represented here by 

a semicolon character), assignments, branches and loops; and arithmetic operators such as addition, 

subtraction, division and multiplication. The leaf nodes of the graph denote variables (represented 

here by a node showing the symbolic name of the variable) or constants. Constants (such as 2 and 3 
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in the above program) are treated no differently than variables, other than the setting of a flag in the 

symbol table. 

 

The program expressed by this parse tree can be executed in a top-down manner. Any node can be 

invoked to return the numeric value of the sub tree in the current state at the time of invocation. To 

execute the program, the value of the root node is requested in the context of some given input 

system state. A system state in this context refers to the values of all symbolic variables. This 

system state is global and shared throughout execution of the tree. As such, the state may be altered 

during execution (for example, as a result of the assignment operation), and this altered state 

subsequently inspected. For sequencing nodes, the left hand side child is evaluated first, followed 

by the right hand side child and this value returned. These semantics are similar to the comma 

operator in C. 

 

This tree has the effect of first calculating the value of the expression b-2 and assigning this value 

to the variable a, and then calculating the value of the expression 3*a and assigning this value to c. 

 

We may evaluate the program considering one instantiation of an input system state to produce a 

single output system state. That is, numerically. We may alternatively evaluate the program 

symbolically, across all input states, to provide an algebraic representation of the system state to 

system state mapping given by the program. 

 

A symbol table contains the information about the variables referred to in the input program. The 

symbol table is stored internally as a mapping from unique keys (unsigned integers) to structures 

containing data defining the nature of the variable. 

 

This data includes: 

• The symbolic name of the variable. 

• The scoping of the variable in the context of the program. The parse tree may represent an 

isolated subroutine apart from calling program. In this case, certain variables may exist only 

within the scope of the subroutine. 

• The constant nature of the variable. 

 

For the purposes of this project, we consider only variables of signed 64-bit integer type.  

 

Target Architecture 

The target architecture for the evolution of programs is a simple register machine consisting of a 

number of general purpose registers, capable of storing 64-bit signed integers and available to the 

inserted program, and a symbolically accessible memory: storage for 64-bit signed integer values 

that may be addressed by a symbolic name for read or write access. Software has been created that 

allows for non-interactive or interactive (user-stepped) interpretation of programs written in the low 

level language for this architecture. 
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A simplified, RISC-like low level language is specified for the purposes of this project. An 

instruction in the low level language consists of an operation and a number of operands whose 

quantity and nature are defined by the choice of operation. 

 

For example, an instruction performing addition may appear as ADD 2, 0, 1. This instruction 

consists of the operation (represented by the readable mnemonic ‘ADD’), the number of the register 

into which the value of the result of the addition should be placed (the ‘destination register’), and 

the numbers of the registers from which the values to be used in the addition should be read (the 

‘source registers’). This instruction stores into register 2 the value produced by adding up the values 

currently stored in registers 0 and 1.  

 

Possible programs performing the operation ‘Calculate the integer mean of the values of the 

variables a and b, and store the result in variable d’ are shown below in high level source language 

form, parse tree form and as an instruction string written in the low level language.  

 

 
 

c = a + b; 

d = c / 2. 

 

LOADS 0,   a   // load the value of variable a into register 0  

LOADS 1,   b   // load the value of variable a into register 0  

ADD   0, 0, 1  // add the values of registers 0 and 1 and store the result in register 0 

LOADV 1,   2   // load the direct value 2 into register 1 

DIVP  0, 0, 1  // divide (protected division) the value of r0 by the value of r1 and store the result in r0 

STORS 0,   d   // store the value of register 0 into variable d 

HALT           // end program 

 

 

Note that the version written in the low level language does not refer to variable c at any time 

during its execution: the semantics of the program did not specify its inclusion. An optimising 

compiler may produce machine code that removes the need to directly store or consider the 

intermediate calculation; certain architectures provide a ‘barrel shift’ that can augment a standard 

arithmetic instruction with a bitshift operation. This may only occur if it is determined that the 

variable c is not required subsequently. The required information may be obtained by inspecting the 

scope of variable c, defined in the symbol table. 
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In this project, Linear Genetic Programming (LGP) will be used to attempt to induce programs that 

have the same semantics as an input program in the form of a parse tree and symbol table pair. It 

will do this by first producing a random population of candidate programs in the low level 

language, calculating a value representing the suitability of each program, then repeatedly 

combining and modifying programs with high suitability with the aim of iteratively producing 

successively more suitable programs until a program that is sufficiently suitable is generated. The 

calculation of the suitability value, referred to henceforth as ‘fitness’ to mirror genetic programming 

literature, will include the degree of correlation to the semantics of the input parse tree program, and 

several other measures reflecting the ‘sanity’ present in the candidate programs. 

 

 

Genetic Operations 

Tournament selection will be used to select programs from the population for application to the 

available operations. In tournament selection, N programs are randomly selected from the 

population to participate in the tournament, then from this set the M programs with the highest 

fitness values are passed to the operator. 

 

The population model used in this system is a steady state model where the number of candidate 

programs in the population will remain constant throughout. For each new program produced by a 

genetic operation, a tournament is used to choose a random program with low fitness to be removed 

from the population. 

 

There are two operations available to the evolutionary system to manipulate candidate programs. 

These actions are selected randomly according to rate parameters given to the evolutionary system. 

 

The crossover operation combines the contents of two source instruction strings to produce two new 

instruction strings, which are then inserted into the population. Transition points are randomly 

placed within the two instructions. The new strings are constructed by copying instructions from 

first string until the first transition point, then copying instructions from the second string starting at 

the first transition point until the second transition point, then copying the remaining instructions 

from the first string starting from the second transition point until the end. 

 
 Instruction String a Instruction String b 

     

 Instruction a1  Instruction b1  

 Instruction a2  Instruction b2  

 Instruction a3  Instruction b3  

 Instruction a4  Instruction b4  

 Instruction a5  Instruction b5  

 Instruction a6  Instruction b6  

 Instruction a7  Instruction b7  

 Instruction a8  Instruction b8  

 Instruction a9    
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 New Instruction String a New Instruction String b 

     

 Instruction a1  Instruction b1  

 Instruction b3  Instruction b2  

 Instruction b4  Instruction a2  

 Instruction b5  Instruction a3  

 Instruction b6  Instruction a4  

 Instruction a8  Instruction a5  

 Instruction a9  Instruction a6  

   Instruction a7  

   Instruction b7  

   Instruction b8  

 

 

The effect of the mutation operation is to alter an existing instruction at random from the chosen 

instruction string. One component of the instruction is chosen at random from the available 

components (the number and nature of which will depend on the current operation). If an operand 

component is chosen, an operand of compatible type is chosen in its place. If the operation 

component is chosen, then the all components of the instruction are reinitialised. 

 

In addition, the mutation operation may insert a new random instruction or remove an existing 

instruction chosen at random from the string. 

 

Fitness Case Construction 

The first stage is to establish the semantics of the input program, as these will be used to determine 

the degree of semantic correlation between the parse tree and a candidate low level language 

instruction string. 

 

As stated previously, it is assumed that the parsing and lexical analysis stages of compilation have 

been fully completed. Therefore, we can assume that the symbol table contains sufficient 

information to determine which variables referred to within the input program are of importance.  

 

We can draw from the symbol table the following attributes of any given variable: 

• If the variable exists purely within some limited scope, solely as a holder of intermediate 

calculations, then candidate programs are permitted to freely read and write to this variable 

at any time. 

• If the variable exists in a scope higher than that of the parse tree, then candidate programs 

are permitted to read the value of this variable, but they are not permitted to change it. 

• If the variable has a value of use associated with it before execution begins. 

 

The symbol table contains flags determining whether the value of each variable must change (as 

with d in the previous example), must not change (as with a, b and, implicitly, all variables other 

than c), or if it doesn’t matter (as with c). 

 

Intuitively, it appears that it may be possible to execute the low level instruction string in a 

symbolic fashion to produce an exact statement of the state to state mapping that the program 
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performs. This statement could then be compared with a statement describing the semantics of the 

parse tree to determine the degree of semantic correlation. However, I believe that this approach 

would become unworkable for all but the simplest of cases. 

 

Instead, a sampling of the possible values of the input variables is considered. This is analogous to 

compiler testing. It is believed that through a representative sampling of the input values, enough 

data will be available to construct a sufficient expression of the state mapping defined by the 

program. The number of samples will affect the accuracy of the expression, and therefore the 

accuracy of the output program. If there are too few samples, then the resulting program may 

exploit properties specific to the sample set. Increasing the number of samples will increase the time 

required to calculate the fitness of a candidate program. 

 

For each sample set of input values, a fitness case is built by evaluating the input parse tree 

program. Each fitness case contains the values of the symbolic variables before execution, after 

execution, and a full record of all the intermediate evaluations that took place during evaluation. In 

addition, the number of calculations that were required, in total, to produce the result value is 

recorded as a heuristic measure of the complexity of calculation. 

 

Fitness Evaluation 

The fitness value for a candidate is calculated as the total of the degree of semantic correlation and 

additional values representing the ‘sanity’ of the candidate program, over all fitness cases. 

 

To calculate the degree of semantic correlation, each candidate program is tested against each 

fitness case in turn. A virtual machine instance is created and reset; the input symbolic variable 

value set is copied from the fitness case into the variable machine symbolic variable memory, and 

the execution started. When execution terminates, the final values of the target variables in the 

memory of the virtual machine are compared against those from the fitness case. If the values of all 

target variables are exactly the same, no penalty is applied. If the value of a variable differs, a 

constant penalty is given together with a variable amount of penalty as a function of the error.  

 

During the execution of the candidate program, a line by line record of the execution is produced. 

This record contains, for each executed arithmetic instruction, the operation that was performed, the 

register locations and values of the operands used and the register location and value produced as a 

result. For symbolic loads, only the destination register location and value is stored. It is possible to 

perform some analysis of the program without this record, but this may become complicated if 

conditional or jumping instructions are applied. With the introduction of the fitness cases as fixed 

points in the input space, it makes sense to continue in this vein by analysing the exact actions taken 

as a result of these input sets. 

 

The complete record allows for the construction of a timeline showing the values of the registers 

after each instruction execution. If the registers are not reset to a known value before execution 

begins, this record shows which registers hold determinate values (which may be assumed to be of 

some use), or indeterminate garbage values (which will not be the same between executions, and 

therefore should not be relied upon in the output program).  
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Fitness bonuses and penalties are activated during analysis of the behaviour of the candidate 

program. These bonuses are designed to ‘coax’ the evolution of candidate programs towards those 

which a human programmer would consider productive. 

 

The following productive behaviour is rewarded: 

• Reading the value of a symbolic variable. 

• Writing to the value of a variable that may change during execution. 

• Writing to the value of a variable that must change during execution. 

• Reading from a register whose value is determinate at the time of reading. 

• Performing a calculation that results in a value that was encountered during construction of 

the corresponding fitness case. An added bonus is applied if the low level instruction 

correlates to the construct in the parse tree that was used. 

 

The following counterproductive behaviour is penalised: 

• Writing to a register and never subsequently reading it. 

• Writing to a symbolic variable (other than one designated as an output) and never 

subsequently reading it. 

• Writing to a register twice in succession without reading it in the interval. 

• Reading from a register containing an indeterminate value. 

• Performing a calculation upon indeterminate values. 

• Writing an indeterminate value to any register. 

• Writing an indeterminate value to any symbolic variable. 

 

It is hypothesised that the crossover operation will combine programs that are correct ‘up to a point’ 

with genetic material from elsewhere to produce child programs that provide further functionality 

than either of their parents. It is also hypothesised that the mutation operations will act to ‘repair’ 

programs by removing or rewriting counterproductive instructions in programs, hence increasing 

their suitability. 

 

The specification of a large number of fitness modifiers is intended to provide a more gradual 

fitness landscape. If only the error in the values of target variables is considered, the mapping from 

input candidate program space will be discontinuous. In such a space, many programs will share the 

same fitness value, and the evolutionary system will be able to offer little improvement. 

 

With the above modifiers, there is the risk that the system may produce a program that calculates a 

useful value at some point during execution, and then attempt to improve such a program by 

repeating the segment that triggers the reward, resulting in a program that does nothing more than 

calculate the same (albeit useful, or even necessary) value multiple times. Given time, such 

programs may dominate the candidate program population. To prevent this, the system can be 

configured to allow these rewards to be awarded only finitely many times per action, or per 

expected appearance of a result value. The complexity heuristic is designed so that a candidate 
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program that correctly implements a multiple stage calculation is deemed to be more suitable than a 

candidate program that performs a simple calculation multiple times. 

 

A ‘hit’ is recorded for a given fitness case if the resulting value for each variable is equal between 

the resulting state of the virtual machine memory after execution has terminated and the final state 

of the parse tree evaluation. If a ‘hit’ is recorded for each fitness case in the training set, the 

candidate program is tested against each fitness case in the test set. If a ‘hit’ is recorded for all 

fitness cases in the test set, the candidate program is judged to be a satisfactory solution: the 

evolutionary system terminates and returns the candidate program. 
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Experiment Design 

Summary 

The aim of this project is to investigate methods whereby Linear Genetic Programming techniques 

can be applied to achieve or expedite code generation. 

 

Two different methods of applying LGP are considered in this project, ‘standard’ and ‘incremental’. 

 

A ‘solution program’ is a program (a sequence of instructions in the low level language) which has 

the same semantics as an input program given in the form of a parse tree. 

 

In the ‘standard’ method, the evolution system is used to attempt to evolve a single, complete 

solution program expressing the same semantics as the input program. This process is guided by the 

fitness metric described previously. 

 

In the ‘incremental’ method, the input program is mechanically transformed into a series of smaller 

programs that, when executed sequentially, have the same semantics as the complete program. A 

solution program for each of these subprograms is evolved in turn, and these are concatenated to 

produce a solution to the input program. 

 

For example, consider the complex program shown below: 

 

 
 

d = b + c; 

e = b – c; 

a = d * e; 

 

This program is transformed by the ‘incremental’ method by taking each interior node in turn and 

transforming these into isolated, smaller programs. The interior nodes furthest down the graph are 

considered first (ie. the program fragments with the highest precedence). 
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Here, the transformation begins with the + node in the lower left of the graph. This is extracted into 

a separate program with an assignment node at its root, a new temporary variable as its left child, 

and the extracted program as its right child. The extracted subtree from the original program is 

replaced with a node referencing the same temporary variable. It can be seen that executing the new 

subprogram followed by the altered program does not result in a change in semantics if the 

temporary variable is not considered to be a critical part of the program; this variable is added to the 

symbol table as an intermediate variable. 

 

 
 

X = b + c 

 
d = X;dddd 

e = b - c; 

a = d * e; 

 

The produced program fragment and the resulting modified program after the first extraction 

 

 
X = b + c       Y = (d = X) 

 
Y;    dddd 

e = b - c; 

a = d * e; 

 

The produced program fragments and the resulting modified program after the second extraction 
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This process continues until a number of subprograms equal to the number of interior nodes in the 

original program have been created. 

 

The evolutionary system is then tasked with evolving solution programs to each of these 

subprograms in turn, and then concatenating the resulting solutions into a composite solution 

program which will have the same semantics as the original input program. 

 

I hypothesise that, with increasing input program complexity, evolving a large number of smaller 

programs using the ‘incremental’ method will result in a considerably lower processor time 

requirement would be required using the ‘standard’ method. 

 

An additional stage of processing has been proposed to investigate the ability of LGP to improve 

solution programs that have already been found. 

 

The ‘refinement’ stage occurs after a solution program has been found by the evolutionary system.  

A new population of random instruction strings is produced, with a predefined fraction of the 

population initialised as copies of the solution program. The termination criterion of this new 

system is set to return the best-of-run program after a predefined number of new candidate solution 

creations. The remaining parameters of the evolutionary system, such as evolutionary system 

parameters and instruction set, remain unchanged. 

 

The evolutionary system will attempt to breed fitter programs and, given that solution programs are 

already present in the genetic population, these fitter programs will most likely be modified copies 

of the solution programs improved by application of the genetic operations. 

 

Measurements 

Two measures are used in this project to evaluate the result of the evolutionary methods. 

 

For a given input program and set of evolution parameters, Computational Effort (EI) is an 

empirical measure of the difficulty of evolving an appropriate solution program using those 

parameters. This value is the expected minimum number of instructions that must be considered to 

evolve a solution with 99% probability of success. It is similar to the Computational Effort (E) 

defined by Koza [koza], except we consider the number of instructions rather than the number of 

candidate solutions. 

 

This different measure is required to compare the difficulty of evolving solutions using the 

‘standard’ method and the ‘incremental’ method. 
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The following ten input programs are specified: 

 

Program A01: 

Assignment of a single constant to a variable 

a = 3 

Output: a 

Constant: 3 

 

 

Program A02: 

Assignment of two constants to two variables 

a = 234; 

b = 1056  

Output: a, b 

Constant: 234, 1056 

 
Program B01: 

Simple calculation; two input variables one 

output variable 

a = b + c 

Input: b, c 

Output: a 

 

Program B02: 

Progressively more complex calculation 

a = b – (c + d) 

Input: b, c, d 

Output: a 

 
Program B03: 

Complex calculation involving a constant 

a = (18 * (c – d)) + b 

Input: b, c, d 

Output: a 

Constant: 18 

 

Program B04: 

Complex calculation with division 

a = ((c – 90) * (b + d)) / e 

Input: b, c, d, e 

Output: a 

Constant: 90 
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Program C01: 

Calculation involving intermediate variable 

b = c + d; 

a = b * e 

Input: c, d, e 

Output: a 

Intermediate: b 

 

 

 

Program D01: 

Calculation involving intermediate variables; 

optimisations possible (a = 2*b) 

d = b + c; 

e = b – c; 

a = d + e 

Input: b, c 

Output: a 

Intermediate: d, e 

 
Program D02: 

Calculation involving intermediate variables; 

difference of two squares (a = b*b – c*c) 

 

d = b + c; 

e = b – c; 

a = d * e 

Input: b, c 

Output: a 

Intermediate: d, e 

 

Program D03: 

Complex calculation involving intermediate 

variables 

 

i1 = ((b + c) – d); 

i2 = ((b – c) + d); 

a = i1 * i2 

Input: b, c, d 

Output: a 

Intermediate: i1, i2 
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The complexity of the required calculations increases with each program. With this increasing 

complexity, additional opportunities for optimisation become available, such as the omission of 

unnecessary calculations, or the ‘folding’ of intermediate calculations into the program (hence 

obviating the need to store and load from variables). 

 

For each of these input programs, evolve.exe has been used to calculate two primary metrics: 

‘Computational Effort’ and the distribution of solution program lengths. 

 

The ‘Computational Effort’ (EI), for a given program, evolutionary system parameter set and 

instruction set, is the minimum number of low level language instructions that must be considered 

to be able to evolve a solution program with 99% probability of success. When a new candidate 

instruction string is created by any method, its length in instructions is tallied as ‘considered’. It is 

an adaptation of the Computational Effort (E) measure used by Koza in (Koza, 1992), where the 

number of complete candidate solutions is used. A measure of required program quanta (LISP 

program nodes in the case of the S-Expressions used by Koza) was proposed by Koza, but was not 

implemented due to insufficient processing capacity and other factors. 

 

EI is used as an empirical measure of the difficulty of evolving a solution program: a higher EI 

indicates that more processing time is required to evolve a solution. For a series of programs of 

increasing complexity, EI can be used to identify trends in processing requirements. EI is calculated 

as follows: 

 

Koza suggests that multiple independent runs of the evolutionary system should be attempted to 

minimize the effect of premature population convergence to a sub-optimal solution. Over a large 

number of runs (200 in this project), we measure the number of instruction considered to evolve 

each solution program. If a run does not produce a solution program within the maximum number 

of allowed creations, that run is aborted. 

 

These measurements are then collected to compute the cumulative probability P(i) of a solution 

program being produced as a function any given number of instruction considerations i. The 

probability of producing a solution program at least once in R runs can be calculated as 

1 – (1 – P(i))
R
. If the desired probability of success z is fixed at a high value, here 99%, then the 

number of required runs can be calculated by: (where the brackets denote the ceiling function) 

 


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z
izR  

 

This function defines thresholds where with increasing P(i), the number of required runs decreases. 

For example, if P(i) is 0.68 then four independent runs are required; if P(i) is 0.78 then three 

independent runs are required and if P(i) is 0.90 then two independent runs are required. 

Multiplying R(z, i) by i gives the total number of instructions that must be considered if each run is 

aborted after considering i instructions. EI is the minimum value of i . R(z, i) over all i for z = 99%. 
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This can be visualised in a performance curve as shown below: 

 

 
 

In this graph, the cumulative probability P(i) is shown as the curve rising from left to right. The 

required number of instruction considerations i . R(z, i) is shown as the heavier curve generally 

falling from left to right. As the cumulative probability increases beyond the thresholds given by the 

R(z, i) function, the number of independent runs necessary to produce a solution program decreases, 

giving the sawtooth nature to the i . R(z, i) curve. This curve hits a minimum at i = 404000, where 

four runs are necessary, giving an EI value of 1616000. 

 

For the ‘standard’ method, EI is calculated as above over 200 runs with z = 99%. For the 

‘incremental’ method, 200 attempts at evolving the input program are used, with the sum of the EI 

values for each subprogram taken as the EI value for that attempt. It is not likely that EI values for a 

given input program are directly comparable between the two methods, but the trends detectable 

when considering a series of successively more complex programs are of value. Computational 

effort is not considered where the refinement operation is applied. 

 

The second metric used to evaluate the evolutionary methods is the distribution of solution program 

lengths. 

 

For both the ‘standard’ and the ‘incremental’ methods, the evolutionary system has been used to 

develop 200 solution programs for each input program. For each of these 200 solution programs, 

the refinement operation has been applied 5 times to produce a collection of 1000 solution 

programs. The distribution of solution program lengths within these sets can be used to gauge. 
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A simple tree walking algorithm has been developed capable of mechanically generating low level 

code given an input program in the form of a parse tree. The following psuedocode algorithm is 

used to construct instruction strings: 

 

 TreeWalkingCompiler(node, register) 

  IF node is interior node 

   IF node is semicolon 

    TreeWalkingCompiler(left_child, register) 

    TreeWalkingCompiler(right_child, register) 

   ELSE IF node is assignment 

    TreeWalkingCompiler(right_child, register) 

    output [STORS register left_child] 

   ELSE IF node is calculation (+,-,*,÷) 

    TreeWalkingCompiler(left_child, register) 

    TreeWalkingCompiler(right_child, register + 1) 

    output [calc register register+1] 

   ENDIF 

  ELSE 

   output [LOADS register left_child] 

  ENDIF 

 END 

 

This code generator is capable of generating code for all of the defined input programs; it requires a 

virtual machine register file of the same length as the depth of the most complex calculation (three 

registers for programs B02, B03 and B04).  

 

This code generator does not perform any kind of analysis or optimisation on the input program. 

For example, when processing programs C01, D01, D02 and D03 it will generate code that accesses 

the intermediate variables, and for programs D01, D02 and D03 it will generate code that explicitly 

performs every calculation as specified. 

 

This tree walking algorithm will be applied to each of the defined programs to produce a predictable 

program length for comparison with those produced by the evolutionary methods. A fully optimised 

‘perfect’ solution as produced by a skilled human programmer has also been produced. 
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Analysis of Results 

Across all programs, for the ‘incremental’ method, the required computational effort appears to 

scale linearly with the number of parse tree nodes in the input program. Increasing the ‘depth’ of the 

calculation, considering programs B01 to B04, does not seem to have a pronounced additional 

effect on the computational effort. This may be because all of the program fragments are of the 

same shape, and of similar difficulty; commutative operators such as addition or multiplication 

would be easier to evolve than non-commutative operations such as subtraction, division or 

assignment due to there being fewer possible programs within the program space that have the 

desired effect. 

 

For the ‘standard’ method, required computational effort appears to scale exponentially with 

increasing calculation depth and increasing numbers of statements (semicolons). 

 

Program B04 has exceptionally high values for computational effort for both the ‘standard’ and 

‘incremental’ methods. Program B04 contains the greatest depth of calculation. The primary 

stumbling-block appears to be the evolution of the division operation. The following graph shows 

the performance curves for the evolution of the various subprograms created when Program B04 is 

treated by the ‘incremental’ method. 

 

 
 

Fragments 2 and 3 appear to be the easiest to evolve a solution for: they consist of a single 

commutative arithmetic operation followed by an assignment. Fragments 1 and 5 appear to be the 

second easiest to solve; they consist of a single non-commutative operation followed by an 

assignment. Fragment 4 is the hardest fragment to solve, and contributes 1110000 of the 1595500 
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instructions of the EI value. This may be because the inclusion of the integer protected division 

operation in a program will often result in very small output values being produced due to the input 

values all lying within a small input range. Such programs may be difficult to improve using the 

genetic operations, as many of the possible operations will not have a noticeable productive effect. 

 

Where both the ‘standard’ and ‘incremental’ methods are able to evolve a solution program within a 

reasonable amount of time, it appears that the solution produced by the ‘standard’ method will be of 

shorter length by approximately 30% - 60%. 

 

When refinement is applied, the evolutionary system is able to reduce the mean solution program 

length by 60% - 80% for programs produced by the ‘standard’ method, and approximately 20% for 

programs produced by the ‘incremental’ method. 

 

For all programs except B04 and D03, ‘standard’ with the refinement operation was able to produce 

at least one solution that is ‘perfect’ given the available instructions. For program D03, ‘standard’ 

with the refinement operation was able to produce at least one solution that was better than the 

unoptimised tree walking algorithm. 

 

For programs A01, A02, B01 and D01, ‘incremental’ with the refinement operation was able to 

produce at least one solution that is ‘perfect’ given the available instructions. For all other 

programs, the minimum solution program length was greater than that of the unoptimised tree 

walking algorithm. These long programs may be the result of the evolutionary system being unable 

to remove intermediate variables introduced during the fragmentation process. 

 

From these results, it appears that the ‘standard’ method is capable of producing optimal programs 

in many circumstances, but only if significant amounts of processor time are dedicated to the 

problem. If ‘any solution’ is acceptable, then the ‘incremental’ method is capable of producing such 

a program quickly and rapidly. However, the only advantage that the ‘incremental’ method has over 

the tree walking algorithm is that the tree walking algorithm does not take into account the finite 

register file in the virtual machine; it may simply exhaust the register file and crash. 
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Evaluation 

I have successfully implemented the program as described in the Design section of this document. 

The evolutionary system prototype software is capable of evolving low level instruction string 

programs that are semantically equivalent to short sequences of statements in the high level source 

code language. In some cases, the system is capable of evolving instruction strings of optimal 

quality given the instruction set. However, this process is time consuming and processor intensive 

due to the evaluation of many thousands of candidate programs against hundreds of fitness cases. 

No guarantee may be made that the process will succeed at all, due to the probabilistic nature of the 

linear genetic programming system. 

 

The incremental approach described in the previous report has been implemented and shown to be 

superior in terms of processor requirements, but inferior when the lengths of the output programs 

are considered. 

 

Due to limited available processor time, the EI values for programs B03, B04 and D03 using the 

‘standard’ method may be artificially high due to the extreme unlikelihood of finding solution 

programs. 

 

It was necessary to alter the method for calculating the distribution of solution program lengths for 

Programs B04, C01, D01, D02 and D03 due to the extreme unlikelihood of finding a solution 

program. It was decided to perform 20 refinements on each solution program rather than 5 as 

normal. This was chosen as a reasonable compromise to dedicating significant time to finding 

multiple unrefined programs, as it is the distribution of program lengths after refinement that is 

under examination, so additional refinements of the same raw program will suffice, given that the 

raw program was produced in the correct manner. 

 

 

 

Future Work 

The experiments undertaken as part of this project have all used the same set of evolutionary system 

parameters. A more complete analysis of the problem would consider the effects of altering the 

various parameters to the evolutionary system, such as the maximum number of new creations, the 

maximum length of a candidate program produced through crossover, the maximum number of new 

creations available to the refinement stage and the fraction of raw solution copies in the genetic 

population during the refinement stage. 

 

This project has only focused on simple lists of statements with no control structures. Additional 

programs may be investigated containing IF statements, WHILE and FOR loops, and other 

constructs manipulating program flow. 

 

The memory model used in this project is a simple symbolic associative memory. It is possible to 

extend the work attempted in this project to low level machines with indexed memory. 
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Result Data 

 

Computational effort EI values: 

 

 ‘Standard’ ‘Incremental’ No. internal nodes No. nodes 

PROGRAM A01 52000 180000 1 3 

PROGRAM A02 432000 359000 3 7 

PROGRAM B01 203000 250500 2 5 

PROGRAM B02 1616000 404500 3 7 

PROGRAM B03 16590000 454500 4 9 

PROGRAM B04 ------------ 1595500 5 11 

PROGRAM C01 1816000 538000 5 11 

PROGRAM D01 450000 787000 8 17 

PROGRAM D02 4842000 845500 8 17 

PROGRAM D03 619406000 1031000 10 21 

 

The ‘standard’ value for Program B04 was incalculable due to exceptionally low probability of 

success for any number of instruction considerations. 

 

Distribution of solution program lengths: 

 

PROGRAM A01 Minimum Maximum Mean Median Mode 

‘Standard’ 3 95 22.42 21 6 

‘Incremental’ 3 44 15.235 15 16 

‘Standard with refinement’ 2 2 2 2 2 

‘Incremental with refinement’ 2 2 2 2 2 

 

 

PROGRAM A02 Minimum Maximum Mean Median Mode 

‘Standard’ 5 63 21.105 19 12 

‘Incremental’ 14 89 39.09 37.5 33 

‘Standard with refinement’ 4 60 6.218 4 4 

‘Incremental with refinement’ 4 9 4.008 4 4 

 

 

PROGRAM B01 Minimum Maximum Mean Median Mode 

‘Standard’ 4 46 14.09 13 11 

‘Incremental’ 11 39 22.375 22 19 

‘Standard with refinement’ 4 26 5.566 4 4 

‘Incremental with refinement’ 4 30 6.991 6 4 
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PROGRAM B02 Minimum Maximum Mean Median Mode 

‘Standard’ 9 46 21.545 21 17 

‘Incremental’ 17 60 33.305 33 35 

‘Standard with refinement’ 6 37 10.864 10 7 

‘Incremental with refinement’ 9 44 21.902 21 20 

 

PROGRAM B03 Minimum Maximum Mean Median Mode 

‘Standard’ 15 47 28.51 28 26 

‘Incremental’ 26 63 44.165 44 43 

‘Standard with refinement’ 8 37 15.069 14 12 

‘Incremental with refinement’ 15 56 35.436 35 37 

 

PROGRAM B04 Minimum Maximum Mean Median Mode 

‘Standard’ 29 62 41 38 38 

‘Incremental’ 36 85 56.65 56 60 

‘Standard with refinement’ 12 27 18.7 16.5 14 

‘Incremental with refinement’ 28 81 48.968 48 46 

 

Program B04 was only run for 5 independent runs (each with 20 refinement attempts) using the 

‘standard’ (with refinement) model due to the unlikelihood of finding 200 solution programs within 

a reasonable amount of time. 

 

PROGRAM C01 Minimum Maximum Mean Median Mode 

‘Standard’ 19 27 22.6 23 N/A 

‘Incremental’ 30 83 51.51 50 49 

‘Standard with refinement’ 6 21 9.27 7 6 

‘Incremental with refinement’ 10 68 34.654 34 32 

 

Program C01 was only run for 5 independent runs (each with 20 refinement attempts) using the 

‘standard’ (with refinement) model due to time constraints. 

 

 

PROGRAM D01 Minimum Maximum Mean Median Mode 

‘Standard’ 17 30 21.2 19 N/A 

‘Incremental’ 54 119 82.84 82.5 78 

‘Standard with refinement’ 3 18 6.62 3 3 

‘Incremental with refinement’ 3 95 58.73 60 63 

 

Program D01 was only run for 5 independent runs (each with 20 refinement attempts) using the 

‘standard’ (with refinement) model due to time constraints. 
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PROGRAM D02 Minimum Maximum Mean Median Mode 

‘Standard’ 20 32 27.6 30 32 

‘Incremental’ 54 111 81.91 80 79 

‘Standard with refinement’ 6 21 11.41 12 6 

‘Incremental with refinement’ 25 91 59.604 59 61 

 

Program D02 was only run for 5 independent runs (each with 20 refinement attempts) using the 

‘standard’ (with refinement) model due to time constraints. 

ROGRAM D03 Minimum Maximum Mean Median Mode 

‘Standard’ 29 44 37.6 42 N/A 

‘Incremental’ 78 147 103.935 103 103 

‘Standard with refinement’ 10 39 21.93 22 14 

‘Incremental with refinement’ 54 129 83.68 83 79 

 

Program D03 was only run for 5 independent runs (each with 20 refinement attempts) using the 

‘standard’ (with refinement) model due to time constraints. 

 

 

 

Solution program lengths in instructions when using non genetic methods: 

 

 Human Programmer 

(optimised) 

Tree Walking Compiler 

(unoptimised) 

PROGRAM A01 2 2 

PROGRAM A02 4 4 

PROGRAM B01 4 4 

PROGRAM B02 6 6 

PROGRAM B03 8 8 

PROGRAM B04 10 10 

PROGRAM C01 6 8 

PROGRAM D01 3 12 

PROGRAM D02 6 12 

PROGRAM D03 8 16 

 

 


