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Abstract 

The production of the content necessary for computer games is an expensive and 

longwinded process. Various ‘procedural content generation’ tools exist to provide a 

large degree of automation to what would otherwise be a time-consuming manual 

process. 

 

This study identifies a specific, common problem in content generation: the generation 

of an ‘island’ environment, and conducts a thorough survey into the techniques and 

tools available to assist. 

 

The research presented is then used to formulate a flexible data processing model 

which can be applied to produce a solution to the stated problem. The model discussed 

is implemented in an interactive software prototype (attached). 
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Chapter 1:   INTRODUCTION 
Background 
Graphical computer games of any complexity require some amount of game assets to 

allow the simulated scenario to be visualised and presented to the user. These game 

assets take many forms: bitmap images, model files, shader definitions, audio files, 

game scripting files and aggregated combinations of these which may include metadata 

and other aggregation information linking related assets. 

 

As an example, a single 3D ‘level’ in a modern game may consist of any number of 

environment meshes, textures and shaders, collision data, event scripting, and 

references to additional objects with their own externally specified assets. Simpler 

games with minimal graphics still have the same requirements: a rudimentary version 

of Pong will still require graphics for the playing field, ball, bats and score numbers. 

 

Creating the content necessary to produce a game is a costly and complex process, 

which can involve many different people at many stages of production. This is 

traditionally a manual (albeit computer aided) process: textures must be drawn by 

artists, sounds created by sound engineers, and level objects and events placed by level 

designers. 

 

One possible solution for the task of content creation is the application of ‘procedural 

generation’ techniques. ‘Procedural generation’ is a loosely defined term; it can be 

used as a description of almost any measure of programmatically assisted content 

generation:  

 

It can be used to describe the process whereby an author can produce a well-defined 

environment, texture or other piece of content by constructing the content from (or 

augmenting an existing piece of content using) a stochastic model [4] : a series of 

configurable mathematical abstractions. These are then evaluated by the game engine 

at run-time to produce a complete piece of content, effectively using a series of 

mathematical functions in the place of a large dataset of explicit values. 

 

The use of this process has two advantages: it gives the author the ability to specify 

content outside the context of a set level of detail. This means the game content can be 

realised by the software in any desired level of detail upon demand. It also allows for 

complex pieces of content to be represented using a smaller set of data than would be 

used to explicitly specify the content. These advantages incur a cost in cycles and time 

due to evaluating the content at run-time. 

 

This process has been used in the games Just Cause and Darwinia to simulate large, 

detailed island archipelago environments. 

 

Procedural generation also applies to the process of generating a piece of content based 

on a series of generalised parameters. For example, Sim City 2000 and Transport 

Tycoon Deluxe allow the player to specify the nature of the environment they would 

like to play within by manipulating a number of variables describing the amount of 

starting forest, severity of elevation, presence of rivers, etc.. These games generate 

different environments each time they are asked to, even if the input parameters remain 



Mathew Carr Page 4  09/06/2009           a 

Page 4 of 66 

constant. With this system, the games can provide a seemingly limitless supply of 

environments to challenge the player. 

 

Through the combination of different procedural generation methods, procedural 

generation can be used to automate the generation and placement of a specific class of 

object within an existing environment, as performed by the tree generation software 

SpeedTree, or it can be used to generate the entirety of a game environment, as is done 

within the games Elite and Frontier: Elite 2 to create, position and name the multitude 

of in-game galaxies which the player can reach. 

 

If a procedural content generation algorithm is appropriately designed, it will have the 

ability to exactly reproduce a previously generated piece of generated content when 

called upon to do so. The galaxies within the game Elite are procedurally generated by 

using data retrieved from a pseudo-random number generator as input to galaxy 

creation routines. The result of this is the specification of an incredibly large, random-

seeming, yet completely reproducible game environment specified through the 

application of strict rules. 

 

This project aims to explore how methods such as these can be used to create 

reproducible environments for interactive software in a specific genre context. 
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Chapter 2:   PROJECT AIMS 
Overview 
The objective of this project is to provide detailed insight into how the use of 

procedural content generation (PCG) techniques may be used as effective tools within 

the computer game asset production workflow. 

 

The following two aims are defined: 

 

• Conduct an in-depth study of the tools and techniques available to generate 

reproducible procedurally generated 3D landscapes. 

 

• Conduct an in-depth study into how the identified PCG tools and techniques 

may be applied to create and present a complete 3D environment within 

criteria representative of real-world computer game requirements. 

 

Quantitative comparisons will be made between the use of these techniques and the 

manual preparation of content in terms of storage requirements (hard drive required to 

specify the terrain), retrieval requirements (CPU and memory resources needed to 

bring the terrain to readiness from it being stored on disc) and memory requirements 

once loaded into memory. 

 

Study of the Tools and Techniques Available for PCG in 3D Landscapes 
I will identify a number of tools and techniques for generating curved, perturbed or 

otherwise detailed surfaces which may be adapted for use in the generation of 3D 

landscapes.  

 

The procedural synthesis of 3D landscapes (also known in literature as ‘surface maps’ 

or ‘topological meshes’) has been the subject of research since the origins of computer 

graphics and CAD. Much research exists covering the subject, suggesting a number of 

methods based upon the use of noise and emerging fractals through recursive 

subdivision. 

 

This study will focus on identifying and analysing methods suitable for the generation 

of a 3D world consisting of a detailed island environment, for use in a computer game 

context. Although simple, this scenario occurs frequently across many different genres 

of computer games and will allow for the exploration of the many different PCG 

techniques available for the problems. 

 

The techniques identified will be evaluated based on the following criteria:  

 

• The applicability and adaptability of the algorithm to the specified task.  

 

o A given algorithm may excel at producing one type of landscape but not 

another. For example: an algorithm may be able to create complex 

mountain ranges when given a completely flat starting mesh, but it would 

not be able to readily create useful islands without modification or 
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adaptation. It is expected that final demonstrative piece of software will 

use a mixture of related algorithms to achieve the desired effect. 

 

• The range of detail that may be extracted from the algorithm. 

 

o It is expected that the majority of algorithms will be able to provide 

‘limitless’ detail, if time complexity is to be ignored. However, it is 

possible that a given algorithm will have additional intrinsic constraints 

that prevent its use beyond a certain point.  

 

• The relationship between the level of detail sought from the algorithm and 

the resulting time complexity.  

 

o It is expected that, for most algorithms, the time complexity will rise 

rapidly with increasing detail. Most algorithms will become unusable 

beyond some level of detail. 

 

• The ability of the algorithm to exactly reproduce the same landscape under 

multiple initialisations with the same seed parameters. 

 

o It is expected that all algorithms that primarily rely on pseudorandom 

number generation will be able to repeatedly exactly reproduce the same 

landscape if the pseudorandom number generator is seeded and used 

correctly. This will have to be handled appropriately in the design of the 

generation software.  

 

Application of Identified Techniques Towards a Realistic Scenario 
Having identified the tools and techniques available, I will propose a model which may 

be adapted for use in generating detailed reproducible 3D terrain surfaces. 

 

This will be done within the context of a specific software problem, allowing for a 

focused discussion of the problem, and how the different methods can be used in 

combination to produce the appropriate result. 

 

The final model will be implemented as a software prototype and evaluated on its 

ability to provide realistic environments. A full description on how the terrain 

generation algorithm and the generated environments will be assessed is included as 

part of the Software Specification. 
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Chapter 3:   STUDY OF EXISTING RESEARCH 
Procedural Content Generation in 3D Landscapes 
The procedural synthesis of 3D landscapes has been the subject of research since the 

origins of computer graphics and CAD. Much research exists covering the subject of 

procedural generation and stochastic modelling, suggesting a number of methods 

based upon the use of noise and emerging fractals through recursive subdivision. 

 

For storing 3D terrains, a distinction is made between ‘meshes’, groups of polygons 

holding the full surface of a terrain, and ‘height maps’, 2D matrices of real numbers 

holding the vertical displacement from a defined value of a series of regularly spaced 

points on a plane. Meshes can be used to directly represent terrain that has holes or 

geometry directly above other geometry. Height maps can only be used to represent 

continuous terrain that does not overlap. It is possible to easily change a height map 

into a mesh (and indeed this is almost always necessary to render the terrain 

represented by the height map), but the opposite is not always possible. 

 

Mandelbrot’s 1975 paper, “Stochastic Models for the Earth’s Relief, the Shape and the 

Fractal Dimension of the Coastline, and the Number-Area Rule for Islands” [1] , on 

the use of stochastic models for modelling the terrain and coastlines of the Earth 

provides the basis for almost all research into the use of noise and fractional Brownian 

methods for terrain modelling. It extends previous studies by Lévy [3]  and Mandelbrot 

[2] into the self-similarity of naturally occurring land formations and their modelling 

through ‘fractal’ [2] models. 

 

In the work, Mandelbrot performs a quantitative comparison between recorded real 

world terrain and coastline values and experimental models based upon fractional 

Brownian motion. A number of hypotheses are specified, exploring the self-similarity 

of coastlines and the relationship between hierarchical island groups, including a 

condition that surfaces and coastlines produced through mathematical simulation 

should be judged on their resemblance in physical appearance as well as on a 

quantitative mathematical basis, a viewpoint identified by Mandelbrot as a potentially 

controversial due to a lack of objectivity in the method. 

 

The paper concludes that little distinction can be made between ‘noise’ and ‘signal’ in 

these models, with the further implication that a well-designed and well-defined 

mathematical model of simulated noise can be used for the generation of a useful, 

detailed set of values for the synthesis and simulation of terrains. The paper provides a 

number of visualisations depicting fractional Brownian surfaces produced by 

modulating flat terrain against values obtained by Poisson Shot Noise. (See Figure 1) 
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Figure 1: Perspective view of a sample of a Brownian surface of Paul Lévy (From 
Mandelbrot's paper, with colours altered for increased contrast upon printing) 

 

This idea is further explored by Fournier, Fussell and Carpenter in the 1982 paper 

“Computer Rendering of Stochastic Models” [4] . In this work, the authors expand on 

ideas previously explored by Mandelbrot and define a new kind of modelling 

primitive, the stochastic model. 

 

They define a stochastic model of an object as ‘a model where the object is represented 

by a sample path (a realization) of some stochastic process of one or more variables’. 

Stochastic objects are comprised of stochastic primitives, a superset of traditional 

deterministic primitives such as polygons and parametric patches. 

 

Stochastic models, when used appropriately, have a number of advantages including: 

 

• It allows for the specification of content outside the context of a set level of 

detail. This means content can be realised by the software in any desired 

level of detail upon demand. Furthermore, the level of detail can be increased 

or decreased at any time without ‘running out’ of detail to display at the 

required resolution. 

 

• It also allows for complex pieces of content to be represented using a smaller 

set of data than would be used to explicitly specify the content. 

 

These advantages incur a cost in cycles and time due to evaluating the content at run-

time, and are only apparent when the object or phenomenon to be modelled exhibits 

stochastic behaviour. The paper covers the concept of ‘internal consistency’, a property 

whereby successive realisations of a given stochastic model should retain the same 

general character as the detail increases. This will be an issue when the noise function 

uses values provided by a pseudorandom number generator: depending on the order of 

values called from the generator, the resulting surface will be wildly different if the 

care is not taken to ensure the random seeds used in the calculation of a set of features 

remain constant. The solution to this problem is to seed the random number generator 

with values defined based upon identifiers of points on the surface. 
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The paper discusses a number of possible implementations of realisations of stochastic 

models based on fractional Brownian motion, including an in-depth study of a method 

using recursive polygon subdivision for the generation of reproducible, complex 3D 

terrain. It is upon this basis that the environments in this study will be constructed. 

 

The paper describes the following method for realising 3D stochastic parametric 

patches suitable for use as terrain: 

 

• Generate the border of the realisation surface using recursive fractal polyline 

division. 

 

• Calculate the centre of the quadrilateral as a Gaussian pseudo-random 

variable whose expected value is the mean of the positions of the four corner 

points and whose standard deviation is c
-lH

 where l is the level of recursion, 

H is the self-similarity parameter and c is an application-dependent constant. 

(See the calculation of 1a in Figure 2) 

 

• Calculate the centre of the new quadrilateral at this level using the new 

horizontal and vertical points as the neighbours. (Calculation of 1b) 

 

• Repeat this process from the second step, within the newly defined square. 

(Calculations of 2a and 2b in Figure 3) 

 

 
 

Figure 2: Quadrilateral polygon subdivision, 'Square' step, level 1. 

 

 
 

Figure 3: Quadrilateral polygon subdivision, 'Square' and ‘Diamond’ steps, level 2. 
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As the level of recursion increases, more detail is added to the surface while the 

decreasing c
-lH

 term attenuates the range of values the displacement variable can take. 

The H controls the rate at which the term attenuates with respect to the level of 

recursion: a H value of zero will cause the term to remain constant, greater values of H 

will cause the value to decrease with increasing recursion. 

 

The authors propose that the points obtained by this method be used as control points 

in a bicubic Bezier patch, but also add that this method of interpolation results in a loss 

of distinct character for intentionally rugged surfaces. It is sometimes sufficient to 

simply use realise the surface as a large number of quadrilaterals at a sufficiently high 

level of recursion. The exact method chosen to realise and render the surface will 

depend on the intended use for the generated environment. 

 

The authors of this paper note that the surface produced by this method cannot be 

strictly classed as a fractional Brownian surface, however it is reasonably similar. They 

further state that any realisation of a stochastic model can only be an approximation of 

the exact surface defined by the parameters of the model, and, like Mandelbrot, 

subsequently choose to evaluate the success of their realisation algorithms on 

subjective visual acceptability rather than on a mathematical empirical basis. 

Stochastic subdivision was revisited in 1987 by Lewis [5] . 

 

Miller analyses a number of ‘database amplification’ methods using fractal polygon 

subdivision in his 1986 paper, “The Definition and Rendering of Terrain Maps” [7] . 

‘Database amplification’ is a process where stochastic methods are used to interpolate 

between values from a sparse input database of known values. In the context of terrain 

generation using stochastic models, database amplification is the process used to 

generate complex terrain around a number of known fixed points. It is also possible for 

the ‘known’ values to be generated stochastically; the major features and general 

character of the terrain can be influenced beforehand by ‘fixing’ specific points and 

generating the terrain around them. For example, the diamond – square interpolation 

based terrain generation algorithm discussed in [4] may produce any form of complex 

terrain given a flat horizontal plane, but it can be ‘forced’ to create complex terrain 

surrounding a central mountainous peak if the central point in the plane is fixed at a 

greatly elevated position. 

 

Miller discusses how triangle interpolation and diamond – square interpolation react 

when used against a completely flat, square input surface with a single raised point in 

the centre of the plane. The paper reports that both these method exhibit artefacts 

known as ‘creasing’, slope discontinuities along boundaries, due to the way the 

interpolation is effected. A novel method, square – square interpolation, is suggested. 

This method removes the effects of creasing, with the added effect of a reduction in 

‘harshness’ in the generated landscape. This was demonstrated by fixing the central 

point in the plane as mentioned above. 

 

Martz’ online tutorial / commentary piece [8] , which provided the inspiration for this 

study, provides an excellent simple explanation of the use of diamond – square 

recursive fractal stochastic modelling for terrain generation and responds to a number 
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of the issues raised in Miller’s paper, namely those relating to the inherent creasing 

resulting from the use of the diamond – square algorithm. Martz’ suggests the creasing 

can be mitigated if multiple fixed points are selected, instead of just one.  

 

A number of studies have been conducted into how fractal terrain generation methods 

can be adapted to meet specific criteria, such exhibiting a specific shape or passing 

through predetermined control points. A number of methods have been proposed to 

guide the generation process such as the use of predetermined spline meshes [11] , 

Gibbs samplers [12] , iterated shuffle transformations [13] and natural erosion / 

deposition simulations [14] . If a height map is treated as a 2D greyscale image, a 

number of techniques derived from those used in the field of image processing can also 

be applied, such as convolutions. Many of these methods are summarised by Stachniak 

and Stuerzlinger in [10] , together with a novel method for applying constraints to a 

generated terrain, minimizing the difference between the generated terrain and an 

idealised prototype. 

 

The algorithm seeks to place a number of nodes in the terrain space affecting the 

altitude of the surrounding terrain by values following a Gaussian kernel. The authors 

note that searching for these values is a costly process in terms of processing, 

sometimes taking several hours to produce a satisfactory set of modification nodes. 

This would obviously be an unsatisfactory delay in a computer game scenario if it 

occurred at the start of every level. However, it would be acceptable if the necessary 

modification nodes were generated during the production stages of the game and 

combined with the fractal parameters used in the generation of the terrain to create a 

multiple stage stochastic model. This composite model would then be realised and 

adjusted by the game software during run-time without the need to regenerate the 

nodes. 

 

A disadvantage of this method would be that the game would be limited to generating 

only the terrains that were compiled in advance; it would not have the ability to create 

random terrains unless a method to generate the necessary modification nodes were 

implemented. It may be possible to reuse the modification nodes and change the 

pseudorandom seed, but there is no guarantee that the resulting terrain would 

satisfactorily meet the same conditions imposed on the original terrain. 

 

Coherent noise space functions such as Perlin’s Noise [16]  and its successor Simplex 

Noise [17] [18] can be used as a basis for terrain generation if the output from the 

function is treated as a set of height map values. Both Noise and Simplex Noise have 

the following characteristics: 

 

• Passing in the same input value will always return the same output value. 

• A small change in the input value will produce a small change in the output 

value. 

• A large change in the input value will produce a random change in the output 

value. 
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• Statistical invariance under rotation: it has the same statistical character 

regardless of rotation. 

• Its features occupy a narrow band of frequency: its features all lie within a 

small, specific size range. 

• Statistical invariance under translation: it has the same statistical character 

regardless of position. 

 

These features allow Noise to be easily controlled; features of any character and size 

can be constructed by adding multiple layers of Noise at different frequencies 

(commonly called ‘octaves’). 

 

 
 

Figure 4: Increasing octaves of Perlin Noise (Image by Davide Coppola / m3xbox.com) 

 

 
 

Figure 5: Complex composite texture constructed from multiple octaves of Noise (Image 

by Davide Coppola / m3xbox.com) 

 

The controllable nature of Noise can be used to augment terrain height maps and 

meshes by jittering generated values to add extra interest. Furthermore, after the terrain 

has been generated, Noise functions can be applied in the rendering phase in geometry, 



Mathew Carr Page 13  09/06/2009           a 

Page 13 of 66 

vertex and fragment (pixel) shaders to add extra visual interest to otherwise 

uninteresting geometry. As Noise is implemented in hardware on some graphics 

accelerators, a well-designed application can send large amounts of relatively sparse 

geometry to the rendering pipeline to be later enhanced with Noise with little speed 

penalty. 

 
 

Figure 6: Terrain mesh created using a Perlin noise based height map. (Image by Stevo-

88. Released into the public domain and available at Wikimedia Commons. Image 
adjusted for increased contrast.) 

 

 

Coherent noise functions can be combined and modulated in many ways to produce 

almost any texture or effect map. The libnoise website has a detailed example where 

over one hundred coherent noise functions are used to create a complex map 

representing a detailed planetary surface [19] . The authors note that this method is 

intended for offline processing only: the map generated in the planetary surface 

example took 25 minutes to generate. 

 

 

Combining multiple techniques is a common tool in procedural content generation. 

.werkkzeug by .theprodukkt [20] is a development environment allowing the user to 

specify and edit complex textures in the context of an operation stack. .werkkzeuggg 

allows for the development of models, textures, sounds and music. This results in 

incredibly small content specification files, with the cost of texture realisation passed 

onto the user during initialisation. 
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Related Course Material 
This study will draw from several modules presented as part of the Computer Games 

Technology degree, particularly those of a purely mathematic nature, such as 

Computer Animation and Maths for 3D Computer Games (CMPCD2035). 

 

I will also draw from my experience gained during my work placement year with Sony 

Computer Entertainment Europe. (June 2007 – August 2008) 
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Chapter 4:   SOFTWARE SPECIFICATIONS 
Design Goals 
Overview 
During the course of this project, several demonstrative pieces of software will be 

designed to create and recreate environments within the following specification: 

 

     
 

Figure 7: Oblique view of environment to be generated 

 

The software is to generate and present an island environment visibly similar to the one 

shown in Figure 7.  

 

The environment will feature at least one large island roughly in the centre of the 

environment. The island will have a large, roughly flat plateau, a unique, realistic, 

unpredictable coastline and the island may be surrounded by smaller islands, rocks or 

other environmental features.  Water will exist in the simulation as a completely flat 

plane extending infinitely perpendicular to the y-axis. The generated topography 

should fall to below the water plane on all four sides of the height map, leaving no 

exposed raised land at the sides of the land mesh. The terrain will be coloured semi-

realistically based on its elevation and gradient. The terrain generation algorithm will 

also provide indirect vertex data (such as normal information) necessary to realistically 

render the terrain on-screen. 

 

Software Mode of Action 
This section covers how the software will interact with the user and present the 

generated environment. 

 

Upon start-up, the program will ask the user to enter a name for their environment. 

This name will be used to initialise the pseudorandom number generator, and the 

generation of the height map will begin.  

 

As multiple initialisations of the pseudorandom number generator with the same input 

seed will result in the same series of pseudorandom numbers being generated, the same 

environment will be produced for any single input seed. 
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When this has completed, the completed terrain mesh will be presented to the user. 

The user will be able to navigate a virtual camera through the environment and view it 

at any angle. 

 

The user will be able to be able to view the interim parameters used in the generation 

of the terrain. The user may also alter these parameters in real-time, with the on-screen 

landscape constantly regenerating to match the new parameters. This is to allow the 

user to explore the parameter space used in the preparation stage of terrain generation, 

with the understanding that the modified parameters no longer reflect the terrain that 

would be automatically generated with the seed string given. 

 

At any time, the user can return to the seed string entry prompt and enter a different 

string. The software should produce exactly the same terrain when given a specific 

input seed by the user. Similarly, the software should create a completely distinct 

environment when any part of the seed is changed by any amount. The user can also 

opt to use the current system time as the seed string, producing an effectively unique 

seed (up to the granularity of the system time). 

 

This design is similar in spirit to the Algomusic series of music synthesizers [24] [25] 

in that a user specified input string is used to create a specific piece of complex content 

which can be recreated at any time. An interesting experiment outside the scope of this 

study would be to run the software prototype created in this study and Algomusic 

simultaneously using the same string to create a stochastic, procedural ‘experience’ 

rather than simply a lone piece of music or a single piece of terrain. 

 

Hardware Resources and Constraints 
The software created as part of this project will be designed to run as a real-time 

application on the following hardware configuration: 

 

• AMD Athlon XP 2500+ CPU (running at 1.83Ghz). (Single core processor) 

 

• 1024 MB of 266Mhz RAM. 

 

• GeForce FX 5200 AGP Graphics Card. 

 

• HDD with at least 100MB free space. 

 

• Colour monitor capable of running at a resolution of at least 1024x768. 

 

• Keyboard. 

 

• Mouse. 

 

This configuration was chosen as it represents a very common baseline configuration 

for home PC systems. According to the Valve Software Steam Hardware Survey 

March 2009 [21] , over 75% percent of participants were using home PC systems of 

this level or better. Note that this survey represents an up-to-date aggregation of 
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regular PC game software users who are likely to demand high quality game graphics 

and content with minimum storage requirements, especially given that Steam’s 

primary method of content delivery is online. 

 

It is likely that the software will run adequately on a lesser configuration, but 

performance issues may arise. Also, specific API functions may not be available on 

older graphics accelerator cards. 

 

Software Resources and Constraints 
The software created as part of this project will use the following libraries:  

 

• Simple DirectMedia Layer (SDL), for windowing and input handling. 

 

• OpenGL, (through Mesa 3-D graphics library) for graphics display and 

graphics acceleration. 

 

• OpenGL Extension Wrangler Library (GLEW), for additional graphical 

techniques. 

 

• GNU ISO C++ Library. 

 

• Libnoise, for the generation of Perlin noise. 

 

• Mersenne Twister MT19937, for the generation of random numbers. 

 

The software will be compiled using the MingW GCC compiler suite and associated 

runtime libraries. 

 

The following library is also used in the comparison of random number generators: 

 

• Random Number Generation - Multiple Streams, rngs.c rngs.h. 

 

Full copyright information for the libraries used is given in the Attributions section. 

 

The software will run under Windows XP SP1 or later. 

 

The software created as part of this project will be presented to the user as an 

interactive, real-time application. As such, the software should not remove control of 

the system from the user for prolonged periods (such as during the terrain generation 

sequence). 

 

The user should be able to quit the software at any time. 

 

Evaluation and Testing 
The terrain generation algorithm and the generated environments will be assessed on 

their ability to resemble a realistic landform ‘as shown’ rather than by comparison to 

fractal models such as fractional Brownian noise, following suggestion by Mandelbrot 

[1]  and Fournier et al [4] . By nature of what constitutes a ‘realistic looking’ landform, 
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however, some features of the generated terrain (such as the shape of the apparent 

coastline) may still representative of a ‘correct’ fractal form, even when this is not the 

direct intention. 

 

Design Rationale 
This specification has been chosen as it allows for a full and directed discussion of the 

PCG methods available to create a specific topographical form through stochastic 

modelling. The methods discussed in this study will be readily adaptable for use in 

many computer game development scenarios, thus providing an immediate benefit to 

developers wishing to include complex terrain in their software. 

 

These methods can also be adapted for more analytic uses, such as the merging of 

disjoint terrain patches and the treatment of ‘holes’ in existing input datasets, but these 

are outside the scope of this study. 
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Chapter 5:   DESIGN OF SOFTWARE PROTOTYPE 
Simulation Prototype Design 
Overview 
The software prototype will have two operating states: ‘seed entry’ and ‘view 

environment’. When the program starts, the simulation is placed into ‘seed entry’ 

mode. In this mode, the user is prompted to enter their desired seed string followed by 

the Return key to dismiss the dialog. During this entry sequence, the seed string is 

stored in a temporary array. When the Return key is pressed, the program will switch 

from ‘seed entry’ mode to ‘view environment’ mode; the temporary seed string is 

copied into the random seed string, with unused cells filled with zero. 

 

On program initialisation, the temporary seed string will be set to empty. If the ‘seed 

entry’ mode is recalled, the temporary string is recalled, allowing the user to view and 

modify the last seed they entered. 

 

When the ‘view environment’ mode is entered from the ‘seed entry’ mode, the 

software prototype will generate terrain based on the current random seed value. 

During ‘view environment’ mode, the user can freely navigate the virtual camera 

through the environment using the keyboard and mouse. 

 

Coordinate System 
The coordinate system used in the simulation is a standard three-dimensional Cartesian 

coordinate space, with the x-axis running from left (negative) to right (positive), y-axis 

running from below (negative) to above (positive) and the z-axis running from in front 

of the viewer (negative) to behind the viewer (positive). 

 

Data Structures 
The terrain is stored as a height map: a two-dimensional matrix of real values giving 

the displacement on the y-axis. To aid in the application of the terrain generation 

methods, the matrix will always be a square matrix with 2
n
 + 1 values along each edge, 

giving a grid of 2
n
 quadrilaterals for easy subdivision, where n an integer representing 

the ‘quality’ of the terrain. Coordinates in a height map are measured from the back 

left side of the original land plane, with increasing x coordinates moving toward the 

right and increasing z coordinates moving toward the viewer. 

 

Other methods such as voxel-based structures may be used to hold 3D terrain data, but 

these methods often have prohibitive memory requirements, and it is rarely the case 

that PC graphics hardware is optimised for their display. 

 

The software will use this height map structure for all of its terrain modification 

calculations, and these calculations will be restricted to deformations on the Y-axis 

only. Figure 9 shows a possible height map that the software may generate. Dark 

pixels indicate areas of low elevation and light pixels indicate areas of high elevation. 
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Figure 8: Section through a possible topography showing the displacement of points on 
the Y-axis on a regular grid on the XZ plane 

 

 

 
 

Figure 9: Height map for generated topography 

 

This height map system is chosen for the reasons of simplifying calculations and ease 

of communication. If all calculations are performed using simple real values within 

matrices, then the complexity of modifying the terrain algorithmically is greatly 

reduced. There would be little advantage in terms of the quality of the resulting terrains 

if a more complicated mesh-based structure were used, especially in the specified 

‘island’ scenario. Height maps allow the complete result of terrain generation to be 

directly visualised as a simple, easy-to-understand greyscale image. Height maps are 

also conducive to experimentation: one can readily refer to specific features present in 

a height map, or refer to metrics such as the distance from the centre of the map. 
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Random seed values are stored as arrays of 100 unsigned chars. The current random 

seed is stored in memory, together with a copy of the last seed entered in ‘enter seed’ 

mode: this seed is recalled if the user recalls the ‘enter seed’ mode. 

 

Camera Simulation 
The user views the generated environment through a ‘virtual camera’ specified by its 

position and a combination of three vectors, extending from the centre of the camera in 

the direction it is facing, to the left, and upwards. This camera specification allows for 

an interactive system to be implemented very easily: the ahead, lateral and upwards 

vectors form an orthonormal coordinate basis and the position vector is readily 

available, allowing them to be used as the rotation and translation parts of a 4x4 matrix 

representing the world-to-eye-space transformation necessary to view the environment 

through the camera. The camera system is designed to ensure internal consistency 

when these values are modified: if the ahead, lateral and upwards vectors were to not 

form an orthonormal basis, the camera matrix would become meaningless and 

distorted visualisation would result. 

 

The user can move the camera in any direction relative to its current orientation using 

the keyboard, and can pitch, yaw or roll the camera using mouse gestures. A number of 

special function keys are implemented, allowing the user to restore the camera position 

and orientation to a predetermined preset, focus on the origin and eliminate camera 

roll. 

 

Visualisation of Terrain 
The topography is visualised as a regular grid of 2

n
 triangle pairs ABC, ACD on the 

xz-plane. Y values will be read directly from the height map. It is expected that these 

values will lie in [0, 1]. To allow the detail level of the texture to be increased without 

affecting its on-screen size, the resulting terrain mesh is scaled to fit within the 

coordinates [-1, 1] along the x and z-axes. 

 

 
 

Figure 10: Tessellation of a grid cell 

 

Normals are generated by calculating the cross product of vectors AB and AC. (AC 

and AD for the complementary triangle.) 

 

The generated vertex positions, colours and normals are inserted into a composite type 

representing an OpenGL vertex, and passed to the API for rendering. The terrain 

visualisation is only necessary if the terrain generation parameters have changed. 

Therefore, when the visualisation has completed, the generated terrain mesh is stored 
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in an STL vector of this composite vertex type, allowing for the use of the OpenGL 

vertex array API as a method of accelerating the rendering. Early versions of the 

prototype used OpenGL Immediate Mode with caching of the generated mesh between 

frames, resulting in unacceptably slow rendering, especially for large values of n. 

 

Selection of Pseudorandom Number Generator 
This software prototype requires the use of a pseudorandom number generator with the 

following characteristics: 

 

• It should have a uniform distribution. 

 

o The output of a pseudorandom number generator with uniform 

distribution can be reshaped to fit any required distribution.  

 

• It must return its results quickly. 

 

o The speed of any algorithm using the pseudorandom number generator 

will be dependent on the speed of the generator.  

 

• It should have a large period. 

 

o The number of possible states of the random number generator places a 

limit on the number of possible environments that can be produced. This 

should be maximized where possible. 

 

The prototype developed in this report uses the Mersenne Twister. The analysis of the 

available pseudorandom number generators has been placed as an appendix. 
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Terrain Generation Model - Simple 
Overview 
For the scenario handled in this study, I propose the following model for the terrain 

generation method for my prototype application: 

 

 
 

Figure 11: Basic model of processing in the software prototype 

 

This diagram shows the relationship between data in the design of the software 

prototype. The Random Seed is the input to the system, and is used to produce the 

Pseudorandom Number Sequence, and from that the Terrain Generation Parameters. 

The Terrain Generation Parameters refers a collection of parameters for controlling a 

terrain generation process: for example, ‘roughness’ and ‘decay’ parameters for 

controlling a diamond – square algorithm. To restrict the range of terrains that can be 

created, the mapping from the pseudorandom number sequence should produce output 

values in a predetermined optimum range. The Pseudorandom Number Sequence 

element refers to the complete sequence of pseudorandom numbers used directly in the 

terrain generation algorithm (as if they were called in advance). 

 

Together, these two elements describe the complete stochastic model used to produce 

the terrain described by the random seed. The mapping from the random seed to the 

pseudorandom number sequence is a one-to-one mapping, as are the mappings from 

the pseudorandom number sequence to the terrain generation parameters and the 

generated terrain. As a result, the random seed has a one-to-one mapping with the 

generated terrain: the generated terrain is reproducible. 

 

This model allows a single algorithm to be used to generate terrain procedurally. As 

the character of the terrain produced solely relies on the choice of algorithm, my goal 

is to find an algorithm that will constantly produce terrain that meets the requirements 

listed in the Design Goals section. 
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Diamond – Square algorithm 
Figure 12 shows the first terrain produced by a prototype using the diamond – square 

algorithm. 

 

 
 

Figure 12: First terrain rendered using the diamond - square algorithm with wrapping 
height map 

 

 
 

Figure 13: Height map image for previous terrain 

 

This terrain was generated using the modified diamond – square algorithm using 

vertical displacements only described by Martz in [8] . (The original algorithm 

discussed by Fournier, Fussell and Carpenter [4]  suggests mid-point displacements 

perpendicular to the original polygon, which is incompatible with the height map 

system I am using.) 

 

This algorithm works by recursively splitting a square region into smaller square 

regions in two stages: the ‘square’ step, and the ‘diamond’ step. The centre points of 

these regions is then displaced by a random variable within a range directly 
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proportional to the inverse square of the level of recursion. The implementation used to 

generate the above images produce a terrain that seamlessly wraps with itself.  

 

 
 

Figure 14: Diamond - square algorithm, square stage at recursion level 1 

 

The above figure shows the first square stage of this algorithm. The bold lines show 

the edge of the current region being considered. The dashes lines show the relationship 

between the corners of the region and its midpoint. The four corner points of the 

square ABCD are averaged to give the original position of X. X is then displaced by a 

random value in the range [-r, r] where r is a value inversely proportional to the square 

of the current level of recursion, currently this is 1. As the square ABCD wraps both 

horizontally and vertically, A, B, C and D are all in fact the same point. 

 

 
 

Figure 15: Diamond - square algorithm, diamond stage at recursion level 1 

 

In the diamond stage, the four corner points of the diamond AXBX (specified 

clockwise), are averaged to give the original position of P. Note that the diamond 

AXBX starts at A, moves up off the edge of the grid to X, to B, then down to the 

centre of the grid. P is displaced by a random value in the range [-r, r] where r is a 

value inversely proportional to the square of the current level of recursion, currently 

this is 1. P and (P) are the same point, as the original square wraps. This stage is 

repeated for the point on the horizontal edge of the square at the midpoint of BC. 
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Figure 16: Diamond - square algorithm, square stage at recursion level 2 

 

In the second level of recursion, the process is repeated with the four squares produced 

when the original square is split in half horizontally and vertically. Here, the four 

corner points of the square APXQ are averaged to give the original position of R. R is 

then displaced by a random value in the range [-r, r] where r is a value inversely 

proportional to the current level of recursion, now 2. This is repeated for the points to 

the top right, bottom right, and bottom left of X. 

 

This algorithm can run for any number of recursions, with the number of quadrilaterals 

produced quadrupling with each extra level of recursion. Figure 17 and Figure 18 show 

the terrains produced using a grid of 32 and 256 quadrilaterals respectively. This 

algorithm is highly appropriate for terrain generation as its fractal nature is 

immediately evident from the description of the algorithm. 

 

It is highly efficient in terms of storage as only three values are used to specify the 

terrain: the number of recursions, the initial value of r and the coefficient used to 

attenuate r. As the values are taken from the pseudorandom number generator in order 

of increasing detail, the level of detail of the terrain can be increased or decreased 

freely with no need to ensure that the random generator produces the values in the 

‘correct order’. For example, if the algorithm were to calculate the values in ‘across 

first then down’ order, it would be necessary to have strict control of order of values 

produced by the random number generator to insert or remove vertices between others. 

 

In my implementation, the terrain mesh is stored in memory as a triangle list of 

OpenGL vertex composite types. If the level of recursion is altered, vertices are not 

merged or split: it is necessary to release the held memory and regenerate the terrain 

from scratch. In the prototype, a C++ class named WrappingArray is used to 

encapsulate a rectangular 2D array of elements of type T. The float type is used to 

store real values. 
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Figure 17: Terrain generated by diamond - square algorithm with 32 cells per side (2048 

triangles) 

 

 
 

Figure 18: Terrain generated by diamond - square algorithm with 256 cells per side 

(131072 triangles) 
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This algorithm, as it stands, is not appropriate for the goals I have specified. The 

algorithm has too much variation in the landscapes it produces, and it generally 

produces exaggerated, jagged, mountainous terrain, even when the roughness 

parameter values are constrained. There is no guarantee that the resulting landform is 

an island; there is a significant chance that the resulting landform is a concave pit, 

instead of a convex raised mass. 

 

 
 

Figure 19: Selection of terrains produced by the diamond - square algorithm 

 

It is possible to alter the algorithm so that it no longer generates terrains that 

seamlessly wrap. I suggest that this may cause the algorithm to generate more island-

like terrain forms, as well as allowing for some extra consideration for the boundary of 

the surface. If the boundary of the surface were controllable, it would reduce the 

likelihood that the exposed edges of the terrain would be visible above the water level. 

This artefact is most visible in the upper right example in Figure 19, where a dominant 

raised feature lies on the boundary of the surface, causing raised, exposed edges on 

two sides of the mesh. 

 

The original algorithm by Fossell et al suggests that the border of the terrain mesh be 

generated first as a fractal polyline followed by the body of the terrain mesh. Exposing 

the generation of the boundary as a separate process would allow fine control over the 

generation of the edges, but it would alter the order that the random numbers were 

retrieved: an increase in the level of detail would cause a variation in the amount of 

random numbers retrieved before the generation of the surface begins, causing an 
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entirely different surface to be generated. This could be mitigated by resetting the 

random number generator to a known position after the boundary polyline has been 

generated. 

 

A simpler solution would be to use the algorithm without modification, but reject any 

stages that attempt to retrieve the position of points that lie outside of the surface. This 

would cause all points on the boundary of the surface to be unmodified, as well as 

causing all significant displacements to be restricted to the centre of the surface. As the 

intended surface is an island, it is sufficient that all four edges are below the surface of 

the water. 

 

As suggested by Martz, it is possible to specify a number of fixed points in the mesh 

and have the algorithm interpolate other points around these. This method has some 

limitations due to the order in which the displacements are calculated: a fixed point 

will have more influence on the surrounding points if it lies in a position where it 

would be encountered early in the algorithm. If the centre point is fixed, all other 

points will be affected, if a point ¼ of the way across the surface is fixed, only points 

in the same ¼ square will be affected. 

 

Through experimentation, I have found that this algorithm is too erratic to try and 

‘force’ the creation of an island using a selection of fixed points near the centre of the 

height map. 

 

Perlin Noise / Simplex Noise 
Perlin Noise is a coherent noise space function mapping multidimensional input values 

into real values [16] . This discussion also applies to the successor of Perlin Noise, 

Simplex Noise, as it was designed toward the same goals, has the same features, 

interface and usage.  

 

Noise is widely used for the procedural generation of textures and other effects. A 

single sample of Noise has a pseudorandom appearance, with features all of a similar 

size. By combining multiple scaled copies of Noise (‘octaves’), complex textures can 

be evolved. 
   

There are many techniques for using Noise to generate terrains. By filling a height map 

using a two-dimensional sample of multi-octave Noise, similar results to the diamond 

– square algorithm are produced. Attempting to create islands using low frequency, 

high amplitude Noise octaves results in a surface of a suitable character, but there is no 

way to specify the position of the island or tell that the island will be sufficient height 

or size. 

 

Unlike the diamond – square algorithm, this algorithm does not rely on the use of a 

pseudorandom number generator to amplify the data, and therefore does not have the 

same conditions on its use between detail levels. It is possible to sample the Noise 

space at any resolution required; increasing detail exists at all ranges as long as there 

are sufficient octaves near the frequency of resolution. 
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As Noise is simply a space function, the inputs to a Noise based terrain generator 

specify the nature of the mapping between the coordinates in the space of the height 

map and the coordinates in Noise space. Values taken from the pseudorandom number 

generator specify the number of octaves of Noise to combine, and a mapping function 

for each, which can take any form. 

 

In isolation, Noise does not allow for the generation of a specific type of feature, such 

as the island specified in the Design Goals. It is necessary to combine multiple octaves 

of Noise with further functions defining the valid boundary of the island to achieve 

this. This is explored fully in the advanced terrain generation model. 

 

 
 

Figure 20: Terrain generated through Perlin Noise (libnoise), 256 cells across (131072 
triangles) 

 
 

Figure 21: Height map for the previous terrain 
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Mathematical Specification 
It is possible to attempt to specify an island explicitly using parametric functions and 

patches. The possible range of landforms is limited to what can be specified through 

the functions, and the output is often considered too abstract or artificial. It is for this 

reason that Noise and other related coherent noise functions were developed. 

 

 
 

Figure 22: Mock-conical landform generated parametrically 

 

More complex structures can be built up if the number of functions used in their 

construction is increased dramatically. This will incur a cost in increased processing 

time. 

 

 
 

Figure 23: Height map generated through repeated addition of 20,000 normally 
distributed, randomly placed Gaussian kernels 
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Conclusion 
Using the terrain generation model I have proposed, it is very difficult to produce a 

terrain that meets the goals I have specified. Each of the methods I have identified all 

excel at producing arbitrarily detailed surfaces with a specific character, but none of 

them directly allow for specifying the location or position of major features without 

adversely affecting the rest of the landscape. 

 

However, this is not due to any deficiency in the methods. Both diamond – square 

fractal subdivision and Noise are emulations of fractional Brownian motion, and as 

such are designed to exhibit properties such as overall scale independent self-

similarity. They are not designed to allow for the specification of major features, and 

would indeed be flawed if they did. 

 

In response, I propose a more sophisticated terrain generation model. 
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Terrain Generation Model - Advanced 
Overview 
Based on my initial analysis of the methods available, I propose the following 

improved processing model: 

 

 
 

Figure 24: Advanced model of processing in the software prototype 

 

This diagram shows the relationship between data in the design of the software 

prototype. The shaded circle represents the pseudorandom number generator as a data 

source. Whenever the pseudorandom number generator is used as a data source, it is 

reset first to a known offset from the start of the sequence given by the seed string, so 

that each use of it is independent. The unshaded diamond represents a mapping from 

real values [0, 1] into appropriate parameter values. 

 

The Random Seed String is the input to the system, and is used to seed the 

pseudorandom number generator. The terrain generation takes place as a sequence of 

operations, shown in brackets in the diagram. Each operation takes a number of 

parameters derived from the pseudorandom number generator and transformed to an 

appropriate value, together with an input height map, if appropriate. These operations 

each return a height map as a rectangular array of real values in the range [0, 1] (they 

are not clamped, so it is possible to overflow). Each operator encapsulates a single 

specification and realisation of a stochastic model.  
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As the data is processed by each operation in turn, a complex height map with all of 

the desired features can be evolved. 

 

As with the previous model, the mapping from the random seed to the pseudorandom 

number sequence, the mapping from the pseudorandom number sequence to a 

parameter set or height map function, and the mappings between operations are all 

one-to-one. As a result, the random seed has a one-to-one mapping with the generated 

terrain: the generated terrain is reproducible. 

 

The height map functions defined in the operations should all work in a height map 

coordinate space ([0, 1], [0, 1]) so that they become invariant when the detail level 

changes. 

 

This model allows the programmer to specify exactly how the data is handled at each 

step of the process. The overall character of the landscape is defined through the 

operations chosen and the mapping from the pseudorandom number generator to the 

parameter values. It will be an experimental process to discover a series of operations 

that produce the desired outcome. To determine the appropriate mapping for the 

parameter, the prototype will allow the user to override these values temporarily and 

see the effects that they have on the environment in real-time. I intend to use this 

function to discover the ‘correct’ value for each exposed parameter, and then instruct 

the operation to use parameters within a certain deviation from this value. This will 

cause the generated environments to all have a similar but not identical nature. 

 

The overall result of this model is that every environment generated will have the same 

overall features, but will show a wide variation in the supplementary details. 

 

This model is similar to the .werkkzeug environment by .theprodukkt [20] as discussed 

in the Study of Existing Research section. My model proposes that the order of 

operations is ‘baked’ into the application with only the seed string exposed as a 

parameter, whereas .werkkzeug defines content by its parameterised operator stack, 

allowing the user full control. 

 

Design of Suitable Composite Model 
The choice of operation and parameter ranges is directly influenced by the nature of 

the goal environment: each operation (or combination of operations) in turn contributes 

one of the features found in the goal environment. 

 

The major features required to create the desired island environment are: 

 

• A dominant landmass near the centre of the height map. 

• An irregular coastline similar to a real island. 

• The possibility of smaller islands close to the dominant landmass. 

• No land above water at the boundary of the height map. 
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Before constructing the composite model, I will formalise a number of operations 

based on the algorithms already discussed:  

 

Fill(value) returns a height map filled with copies of value.  

 

DiamondSquareNoWrap(original_r, r_attenuation, input_height_map, 
fixed_point_set) returns a height map filled with values calculated using a diamond – 

square fractal subdivision algorithm (with wrapping disabled by disallowing off-

height-map reads) against input_height_map with original deviation value original_r, r 

attenuation constant r_attenuation. The array fixed_point_set defines the location and 

height of points that are to be fixed. 

 

PerlinNoise(perlin_parameters) returns a height map filled with values retrieved 

from a Perlin Noise space defined by the mappings in the structure perlin_parameters. 

 

Add(height_map_a, height_map_b) returns a height map containing the sum of each 

of the elements in height_map_a and height_map_b by element-by-element addition.  

 

Subtract(height_map_a, height_map_b) returns a height map containing the value of 

(a – b) for each of the elements in height_map_a and height_map_b by element-by-

element subtraction.  

 

Multiply(height_map_a, height_map_b) returns a height map containing the product 

of each of the elements in height_map_a and height_map_b by element-by-element 

multiplication.  

 

ClampLower(height_map_a, minimum_value) returns a height map containing the 

value of max(height_map_a.element(…), minimum_value) by element-by-element 

comparison.  

 

ClampUpper(height_map_a, maximum_value) returns a height map containing the 

value of min(height_map_a.element(…), maximum_value) by element-by-element 

comparison. 

 

R[…] returns a random value in the indicated range. This is a value retrieved from the 

pseudorandom number generator and scaled. 

 

The level of detail and water level are global variables accessible by all operations. All 

height values should be between 0 and 1. The water level is a value between 0 and 1 

indicating the y-coordinate of the water plane. All height values below this are 

considered to be under-water, and are culled by the renderer to accelerate rendering. 

 

Using this syntax, the original diamond – square algorithm would be expressed as: 

 

Output = DiamondSquareNoWrap(1.0, 0.5, Fill(0)) 
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Instinctively, the ‘no land above water’ condition can be enforced by the formulation 

of an operation that causes the edges of the height map to be lowered if they are close 

to the edge of the height map: 

 

Attenuate(input_height_map, k, p) returns a height map containing values from 

input_height_map that have been altered based on the proximity of the current element 

to the edge of the height map. 

 

To ensure a smooth gradient, I specify Attenuate() using the formula: 

 

 
 

This formula causes the input values to falloff toward zero in a parabolic fashion. It 

assumes the values are non-negative. 

 

 
 

Figure 25: Left: landscape before Attenuate(), right: landscape after Attenuate() 
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Generally, the Attenuate() operation will vertices around the periphery of the height 

map towards zero, and as a side effect, will cause the generated landform to have a 

more circular appearance. The jagged character of the landscape remains, however. 

 

To flatten out the highest values of the height map, the Clamp…() operations can be 

applied to simply ‘cut off’ the top of the landscape. 

 

 
 

Figure 26: Effect of the ClampMax(1) operation on the terrain mesh 

 

The ClampLower() operation should be used to ensure that vertices that extend below 

the water line do not exceed a minimum negative value. Extreme negative values, even 

below the water line, may cause graphical anomalies during rendering. 

 

The ClampMax operation leaves a harsh edge where a steep gradient may intersect the, 

now flat, top plane. A more sophisticated approach is to use a non-linear saturation 

function to collapse extremely high height values into a narrow range. 

 

SigmoidCollapse(input_height_map, pre_subtract, pre_scale, a, b, c) returns a 

height map where the values from input_height_map have been transformed using the 

following equation: 

 

 
 

The resulting curve forces extremely low values to become near zero, and extremely 

high values to collapse towards a. b is a constant controlling the steepness of the curve. 

The curve becomes more steep with increasing b. c translates the original terrain 

values left or right along the curve. Experimentation is required to determine the 

appropriate parameters for b and c. a should be 1, causing all the highest points in the 

terrain to saturate there. 
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Figure 27: Curve described by SigmoidCollapse() 

 

 
 

Figure 28: Effect of the SigmoidCollapse() operation on the terrain mesh 

 

The SigmoidCollapse() operation has the effect of increasing the gradient of all values 

that lie in the range (0.3, 0.7). This can be advantageous if the water level is set at 0.9; 

all vertices but the highest will be discarded and those that remain will have a rounded 

gradient leading towards a flattened plateau. 

 

The resulting land mass is a very good representation of the desired island. It meets all 

of the goals listed in the Design Goals. Using SigmoidCollapse(), the height of the 

island is specified by (a – water_level). 

 

However, the results of this algorithm are dependent on the original height map 

saturating against the curve. If the original height map is relatively flat or negative, 

there will be no visible land. 
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Figure 29: Terrain mesh produced by modifying the parameters of SigmoidCollapse() 

 

 
 

Figure 30: Height map for the above terrain 

 

To counteract this, a fixed point structure is defined instructing the original diamond – 

square algorithm to fix the central point in the height map at a parameterised value. All 

of the other points in the height map will then ‘reach’ toward this point while 

exhibiting the normal Brownian motion characteristics. By intentionally saturating the 

height map and collapsing it with the SigmoidCollapse() operator, a certain minimum 

area of land can be guaranteed, regardless of the results of the subdivision. A similar 

strategy would be to simply seed the original height map with high conical or spherical 

values before the subdivision is called. 
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Figure 31: Landmass generated by fixing the central point and intentionally saturating. 

 

 
 
Figure 32: Landmass generated by fixing the central point and intentionally saturating. 
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Figure 33: Landmass generated by fixing the central point and intentionally saturating. 

 

 
 

Figure 34: Landmass generated by fixing the central point and intentionally saturating. 
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To allow for slight variations in the produced islands, the values used for fixing the 

central height point, the values used in the sigmoid curve and the parameters used in 

the subdivision are all specified in the model as ranges rather than constants. For 

example, the peak height used to generate the above images experimentally was set at 

10. Now that I have determined that this is a value that returns good results, the final 

algorithm has been programmed to run using values that are approximately 10. 

 

All of these islands now meet the defined goals, regardless of the input seed. The use 

of the non-linear mapping function has caused the environment to no longer represent 

fractional Brownian motion, but this is not a concern. As a point of interest, the 

coastline remains representative of Brownian motion, as it is an isosurface defined by 

the intersection of the horizontal water plane and the results of the original height map. 

 

The top surface of the island may appear flat, but it still retains the detail from the 

original subdivision, albeit in a compressed fashion. It may be desired that the island 

have some additional roughness within the final landform. To achieve this, the surface 

can be multiplied by Perlin noise to cause it to become arbitrarily perturbed. 

 

Output =  Multiply(PerlinNoise(…), output_height_map) 

 

This algorithm is highly flexible, allowing for a large amount of customisation and 

experimentation. For example, the original height map may be filled with values from 

Perlin Noise, prior to the subdivision stage, to provide additional randomness. If the 

final model does not use diamond – square subdivision, it will no longer be limited to 

height maps that are 2
n
+1 in length. 

 

See the Usage Notes section in Appendix A for a tutorial on how to manipulate the 

software prototype to explore how the parameterised values alter the generated land. 

 

 
 

Figure 35: Complex reproducible procedurally generated landscape with lightning 
enabled. 



Mathew Carr Page 43  09/06/2009           a 

Page 43 of 66 

Chapter 6:   TESTING AND CONCLUSIONS 
Testing and Conclusions 
As stated in the Software Specifications section, the terrain generation algorithm  is 

assessed on its ability to resemble a realistic landform ‘as shown’ rather than by 

comparison to fractal models such as fractional Brownian noise.  

 

From my experience with the prototype, and an informal survey carried out during 

development, it appears that the resulting terrain meshes are good on-screen 

representations of genericised landforms. 

 

It may be possible in future to define exact metrics that describe what is a ‘good’ 

environment, such as minimum ‘habitable’ land surface, and then adjust the 

experimental model parameters to correct the surface. A multi-layer Perceptron neural 

network may be a useful tool for this task as it is well-suited to seeking ideal values in 

a large parameter space. However, the implementation of this is outside the scope of 

this study. 

 

The model described in this study has been specified outside the context of scale, as is 

the case with most abstract graphical constructions. It is up to the user to determine 

their exact needs, i.e. do the islands represent continents, or small islands? The 

algorithm will accommodate islands of any nature through adjustment of the 

parameterised operations stack. 
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Chapter 7:   FURTHER WORK 
Further Work 
The model proposed in this study is simple, but effective. There are many additions to 

the algorithm which may be implemented to provide a more detailed or realistic 

terrain: 

 

The terrain produced through this model takes the form of a solid, unbroken mass of 

land; the algorithms do not allow for the generation of rivers or streams through the 

land. To do this, algorithms such as those described in [10] and [15] where 

predetermined points cause specific shapes to be evident in the final terrain mesh. To 

achieve this, a fractal polyline subdivision method may be used to define ‘rivers’ that 

should run through the final terrain. These ‘river’ definitions are then used to constrain 

the terrain generator, resulting in evident rivers in the final height map. Also, as water 

is specified here as a completely horizontal plane, the height map structure does not 

allow for rivers that lie along elevated land. 

 

The generated islands are completely unpopulated. A real game scenario would require 

the surface to be populated with buildings, road infrastructure, vegetation and other 

additional features. The terrain mesh may be analysed, and appropriate items added to 

the specification. This could take the form of additional operations that accept height 

maps as input and output classes storing building and vegetation placements. The use 

of shape grammars such as L-systems provides an interesting starting point into 

procedural city generation techniques. The papers [22] [23] provide a possible city 

generation algorithm that is compatible with the height maps produced by the proposed 

algorithm. Similarly, by careful use of the pseudorandom number generator, the 

resulting city would also be reproducible. 

 

The renderer used in the software prototype is functionally primitive. An enhanced 

renderer may run the algorithm presented by the model multiple times and retrieve 

copies of the mesh at different detail levels. Then, the mesh can be subdivided, 

allowing the renderer to control the level of shown detail dynamically: far away 

features would be rendered using a lower detailed representation, while close features 

would be rendered using a highly detailed representation. 
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Chapter 9:   ATTRIBUTIONS 
Libraries Used 
The following third-party libraries are used in this project: 

 

• Simple DirectMedia Layer (SDL), for windowing and input handling. SDL is 

licensed under the LGPL. http://www.libsdl.org/ 

 

• OpenGL, (through Mesa 3-D graphics library) for graphics display and 

graphics acceleration. Mesa 3-D is released under the MIT License. 

 

• OpenGL Extension Wrangler Library (GLEW), for additional graphical 

techniques. GLEW is released under the MIT License. 

http://glew.sourceforge.net/ 

 

• GNU ISO C++ Library. Licensed under the LGPL. 

 

• Libnoise, for the generation of Perlin noise. Licensed under the LGPL.  

http://libnoise.sourceforge.net/ 

 

• Mersenne Twister MT19937, for the generation of random numbers. Freely 

made available by the authors for any purpose. 

 

The software was compiled using the MingW GCC compiler suite and associated 

runtime libraries. 

 

The following library is also used in the comparison of random number generators: 

 

• Random Number Generation - Multiple Streams, rngs.c rngs.h. Made 

available for this project. http://www.cs.wm.edu/~va/software/park/ 

 

 

 



Mathew Carr Page 48  09/06/2009           a 

Page 48 of 66 

Chapter 10:   APPENDICES  
Appendix A  
Guide to Using the Prototype Software 
The prototype software used to generate the images in this report is included on the 

attached CD-ROM in the directory ’10 Final Prototype’. 

 

When the programs initialises, you will be prompted to enter a seed string. Feel free to 

type any word or phrase you wish, then press Return. You will then be presented with 

an interactive simulation of the resulting environment. 

 

 
 

Figure 36: Screenshot of prototype application 

 

To recreate the terrain shown in Figure 36, do the following: 

 

• Enter the seed string ‘matt’ (lowercase, without quotes) and press Return. 

• Use the VB keys to set the ‘Peak kicker’ value to 4.521630, and enable the 

fixed peak value by pressing 3. 

• Use the IO keys to set the ‘Sigmoid curve B parameter’ to 6.460001, and 

enable it by pressing 2. 

• Use the KL keys to set the ‘Sigmoid curve C parameter’ to 0.580000. 

• Use the ZX to set the water level to 0.979999. 

• Press F2 to position the camera for viewing terrains based between 0.95 and 

1.00 
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• Press 6 to enable lighting. 

• Press Page Down to cycle to ‘pseudorealistic terrain colouring’ 

• Press + (plus) to increase the detail level. 

 

Controls 
W, S: Move the camera forwards and backwards. 

A, D: Move the camera left and right. 

Q, E: Move the camera up or down. 

 

Hold left mouse button and move mouse: Alter orientation of camera.  

Hold right mouse button and move mouse: Move camera forwards and backwards.  

Hold both mouse buttons and move mouse: Roll camera around current direction. 

 

Main keyboard plus / minus: Increase and decrease the level of detail. Warning: 

increasing the detail too high may cause the program to slow down or crash due to lack 

of memory. 

 

H, J:  Alter the roughness attenuation coefficient for the diamond – square 

subdivision. 

 

1:   Enable the radial attenuation function. 

N, M:  Increase and decrease the radial attenuation power parameter. 

 

2:   Enable the sigmoid curve. 

I, O:  Increase and decrease the B parameter of the sigmoid curve. 

K, L:  Increase and decrease the C parameter of the sigmoid curve. 

  

3:   Enable or disable the fixed peak point. 

V, B:  Increase and decrease the peak fixed point value (if enabled). 

 

4:   Enable/disable water semitransparency. (Shows partly obscured not-yet-culled 

underwater polygons. 

 

5:    Enable/disable smooth shaded terrain. 

 

Z, X:  Raise or lower water level.  

 

R:   Return to the seed entry screen. Enter the same seed string and return to an 

environment previously visited! 

 

F1:   Restore the camera to the original position facing (0, 0, 0). This is the position 

the camera is in when the application begins. 

 

F2:   Restore the camera to the position facing (0, 1, 0). This is an ideal position to 

observe the land when the water level has been raised when using the sigmoid curve 

operation. 

 

F3:   Move the camera to look at the environment from above. 
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F9:   Cause the camera to become upright. This is useful if you have rolled the 

camera over by accident. 

 

F11:  Aim camera at (0, 1, 0). (Elevated sigmoid / water level land position) This is 

useful if you move the camera away from the environment and want to face it again.  

 

F12:  Aim camera at (0, 0, 0). This is useful if you move the camera away from the 

environment and want to face it again. 

 

Home:  Take a screenshot and save it in the ‘screens’ folder. (Does not work when run 

from CD-ROM) 

 

End:  Enable/disable high contrast water.  

 

Page Down: Enable/disable smooth shading.  

 

Delete: Toggle between three different colouring modes: 

- Height map dependent colouring. 

- Height map ‘pseudorealistic’ green/brown colour pallete. 

- Totally white. 

 

Lowercase g: Output a tga copy of the current height map, with colours adjusted so 

that black is 0 and white is 1. (Does not work when run from CD-ROM) 

Uppercase G: Output a tga copy of the current height map, with colours adjusted so 

that water level is black. (Does not work when run from CD-ROM) 

 
In the lower right corner is the current seed. The ASCII values of the current seed are 

shown above a grid showing the hex values of the entire 100 byte string. To increment 

the seed string by 1, press TAB. This results in a unique environment using the current 

settings.  

 

Usage Notes 
To begin, attempt to replicate the ‘matt’ terrain using the instructions on the previous 

page. When you have done so, experiment by changing the parameters gradually. 

 

You will find that when the peak kicker / sigmoid curve are both activated, the peak 

kicker will have a global effect on the overall size of the major land mass in the centre 

of the height map. The roughness constant can be altered to change the erraticity of the 

terrain. If it is reduced sufficiently, the land will become almost circular. 

 

You can explore how the attenuation function alters the terrain by enabling it and 

altering its value. You can notice that with increasing attenuation, the land will 

contract and become more circular. 

 

Altering the sigmoid curve values will alter the ‘corners’ of the terrain. Reducing the B 

parameter will cause the land to become more rounded at the corners. If the B 

parameter is reduced to zero, the sigmoid curve will become a line and the terrain will 



Mathew Carr Page 51  09/06/2009           a 

Page 51 of 66 

cease to be sensible. Increasing B will cause the land to have almost right-angled 

corners. You can change the C parameter to alter where the ‘hotspot’ of the curve lies: 

there will be a point where the island appears to contract suddenly. When this happens, 

you have moved the highest point of the island to the left hand side of the steepness in 

the sigmoid curve. 

 

Additional Prototypes 
There are a number of other prototypes included on the CD. These prototypes are 

largely uninteractive and simply display an example of a specific terrain technique. 

 

In these, the QW keys change the roughness attenuation coefficient for the diamond – 

square algorithm, or advance the Perlin noise mapping by a short value (to show that 

the noise is continuous and coherent). OP keys zoom the camera in and out. 
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Appendix B 
Quantitative Analysis and Selection of Random Number Generator 
This software prototype requires the use of a pseudorandom number generator with the 

following characteristics: 

 

• It should return real values in the range (0, 1) 

 

o Binary pseudorandom number generators exist, but are not appropriate 

for this project. 

 

• It should have a uniform distribution. 

 

o The output of a pseudorandom number generator with uniform 

distribution can be reshaped to fit any required distribution.  

 

• It must return its results quickly. 

 

o The speed of any algorithm using the pseudorandom number generator 

will be dependent on the speed of the generator.  

 

• It should have a large period. 

 

o The number of possible states of the random number generator places a 

limit on the number of possible environments that can be produced. This 

should be maximized where possible. 

 

• It should not gather its data from a large external storage file of values. 

 

o Loading values from external storage limits the range of the data source 

and reduces the period of the returned data (if it were to be accessed 

sequentially using an array-like interface). External data values would 

also be considered an integral part of the project as a whole, increasing its 

total file size significantly, contrary to the aims of this project. 

 

• It should not rely on a large amount of memory or external storage during 

run-time. 

 

o Devoting a large amount of memory to the data source is contrary to the 

aims of the project. 

 

The following pseudorandom number generators are considered for this project:  

 

• Mersenne Twister (MT19937) 

• Default ANSI C rand() function 

• rngs.c by Steve Park. 
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All of these random number generators have the ability to (or, in the case of the default 

ANSI C rand() function, can be adapted to) return real numbers in the range (0, 1). 

 

The memory usage requirements for the Mersenne Twister is less than 20 kilobytes, 

with rngs.c needing even less. The memory requirements for the ANSI C rand() 

function are unknown. 

 

The period for the Mersenne Twister is 2
19937

 − 1, the period for rand() is 

4,294,967,296, the period for rngs.c is 2,147,483,647. 

 

Running the program included at the end of this appendix, the following results were 

obtained for the generation of 600,000,000 random numbers: 

 

• 36.632s for ANSI C rand() function 

• 18.497s for Mersenne Twister 

• 19.838s for rngs.c 

 

These results were obtained on a 1.6Ghz Intel Pentium M processor. 

 

For this project, the Mersenne Twister will be used for its exceptionally large period 

and fast calculation speed. The Mersenne Twister also has a useful interface allowing 

it to be seeded using a data string of arbitrary length, which is highly appropriate for 

the seed string concept explored in this project. 

 
#include <cstdlib> 

#include <cstdio> 

#include <ctime> 

 

#include "mt19937ar.h" 

#include "rngs.h" 

 

inline double ansi_c_rand_wrapper() 

{ 

   return ((double)rand()) / ((double)RAND_MAX); 

} 

 

inline float ansi_c_rand_wrapperf() 

{ 

   return ((float)rand()) / ((float)RAND_MAX); 

} 

 

template <typename T> 

void PerformQuantitativeRandomAnalysis( 

   T (*random_function)(),              /* Function pointer to function producing Ts */ 

   unsigned int repetitions_per_cycle,  /* How many numbers to generate within a cycle */ 

   unsigned int cycles,                 /* How many cycles to run */ 

   float time_for_cycle[]               /* Output: Array of floats to store 

                                           the time in seconds to run a cycle */ 

) 

{ 

   clock_t time_start, time_end; 

 

   /* Run each cycle. */ 

   for (unsigned int cycle = 0; cycle < cycles; cycle++) 

   { 

      time_start = clock(); 

 

      for (unsigned int repetition = 0; repetition < repetitions_per_cycle; repetition++) 

      { 

         random_function(); 

      } 

 

      time_end = clock(); 
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      time_for_cycle[cycle] = ((float)(time_end - time_start)) / ((float)CLOCKS_PER_SEC); 

   } 

} 

 

int main(int argc, char *argv[]) 

{ 

   MT::init_genrand(time(NULL)); 

   RNGS::PutSeed(time(NULL)); 

   srand(time(NULL)); 

 

   const unsigned int NO_REPETITIONS = 20 * 1000 * 1000; 

   const unsigned int NO_CYCLES = 30; 

 

   double (*randfunction[3])(); 

 

   randfunction[0] = ansi_c_rand_wrapper; 

   randfunction[1] = MT::genrand_real2; 

   randfunction[2] = RNGS::Random; 

 

//   float (*randfunction[3])(); 

// 

//   randfunction[0] = ansi_c_rand_wrapperf; 

//   randfunction[1] = MT::genrand_realf2; 

//   randfunction[2] = RNGS::Randomf; 

 

   for (int f = 0; f < 3; f++) 

   { 

      float outputs[NO_CYCLES]; 

 

      PerformQuantitativeRandomAnalysis<double>(randfunction[f], NO_REPETITIONS, NO_CYCLES, 

outputs); 

 

      float total = 0.0f; 

 

      for (unsigned int i = 0; i < NO_CYCLES; i++) 

      { 

         total += outputs[i]; 

         printf("%7.3fs ", outputs[i]); 

         if (((i+1)%5) == 0) printf("\r\n"); 

      } 

 

      printf("= %7.3fs for method %d \r\n\r\n", total, f+1); 

   } 

 

   return 0; 

} 
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Appendix C 
Final Year Project Specification – 26

th
 October 2008 

 

Mathew Carr – Student Registration Number 261177 
CMPGN200X Final Year Project Specification 
 

Degree course: 
Computer Games Technology (BSc. Hons) 

 

Project title: 
A Study of Procedurally Generated Reproducible Environments 

 

Subjects to be studied: 
Repeatable construction of complex 2D and 3D environments through the evaluation 

of procedural content generation algorithms given known or unknown seed data, with 

the aim of using the method in a manner comparable to compression. 

 

Aims: 
This project aims to explore how procedural generation methods can be used to create 

reproducible environments for interactive software in different genre contexts, and to 

create software prototypes capable of generating re-enterable 2D and 3D interactive 

environments based on this. 

 

Description of background: 
Graphical computer games of any complexity require some amount of game assets to 

allow the simulated scenario to be visualised and presented to the user. These game 

assets take many forms: bitmap images, model files, shader definitions, audio files, 

game scripting files and aggregated combinations of these which may include metadata 

and other aggregation information linking related assets. 

 

As an example, a single 3D ‘level’ in a modern game may consist of any number of 

environment meshes, textures and shaders, collision data, event scripting, and 

references to static within-level objects with their own required assets. Simpler games 

with minimal graphics still have the same requirements: a rudimentary version of Pong 

will still incorporate graphics for the playing field, ball, bats and score numbers. 

 

Creating the content necessary to produce a game is a costly and complex process, 

which can involve many different people at many stages of production. This is 

traditionally a manual (albeit computer aided) process: textures must be drawn by 

artists, sounds created by sound engineers and level objects and events placed by level 

designers. Technologies have been developed to automate many parts of this process; 

these are described as ‘procedural generation’ techniques. 

 

‘Procedural generation’ is a loosely defined term; it can be accurately used as a 

description of almost any measure of programmatically assisted content generation.  
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It can be used to describe the process whereby an author can produce a well-defined 

environment, texture or other piece of content by constructing the content from (or 

augmenting an existing piece of content using) a series of configurable mathematical 

abstractions. These are then evaluated by the game engine at run-time to produce a 

complete piece of content, effectively using a mathematical function in the place of a 

large series of explicit values. This process has been used in the games Just Cause and 

Darwinia to simulate large, detailed island archipelago environments. 

 

The use of this process has two advantages: it gives the author the ability to specify 

content outside the context of a set level of detail. This means the game content can be 

realised by the software in any desired level of detail upon demand. It also allows for 

complex pieces of content to be represented using a smaller set of data than would be 

used to explicitly specify the content. These advantages incur a cost in cycles and time 

due to evaluating the content at run-time. 

 

Procedural generation also applies to the process of generating a piece of content based 

on a series of generalised parameters. For example, Sim City 2000 allows the player to 

specify the nature of the environment they would like to play with by manipulating a 

number of variables describing the amount of starting forest, severity of elevation, 

presence of rivers, etc. Sim City 2000 generates different environments each time it is 

asked to, even if its input parameters remain constant. 

 

Through combining different procedural generation methods, procedural generation 

can be used to automate the generation and placement of a specific class of object 

within an existing environment, as performed by the tree generation software 

SpeedTree, or it can be used to generate the entirety of a game environment, as is done 

within the games Elite and Frontier: Elite 2 to create, position and name the multitude 

of ingame galaxies which the player can reach. 

 

If the procedural content generation algorithm is designed to do so, it is possible to 

exactly reproduce a piece of content when called upon to do so. The galaxies within 

Elite are procedurally generated by using data retrieved from a pseudo-random number 

generator as input to galaxy creation routines. The result of this is the specification of 

an incredibly large, random-seeming, yet completely reproducible game environment 

specified through strict rules. 

 

This project aims to explore how similar methods can be used to create reproducible 

environments for interactive software in different genre contexts. 

 

Problems to be addressed: 
This project aims to create software prototypes capable of generating re-enterable 2D 

and 3D interactive environments. 

 

It will do this by accepting some measure of seed data and applying this to an 

algorithm to create a data source that provides repeatable pseudo-random data. It will 

then be possible to generate an interactive environment through the use of a procedural 

environment generation program, using this data source as a source of input 

parameters. 
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Through this method, several key areas will need to be explored: 

 

• Choice of data source 

A data source will need to be identified for use in the procedural 

environment generation. The data source should have the following 

characteristics: 

 

o It should not gather its data from a large external storage file of values. 

Loading values from external storage limits the range of the data 

source and reduces the period of the returned data (if it were to be 

accessed sequentially using an array-like interface). External data 

values would also be considered an integral part of the project as a 

whole, increasing its total file size significantly, contrary to the aims 

of this project. 

 

o It should not rely on a large amount of memory or external storage 

during run-time. 

Devoting a large amount of memory to the data source is contrary to 

the aims of the project. 

 

o The data source must ideally work as if it were a transparent array with 

a similar interface, and queriable in constant time. 

If it became necessary to access distant elements of the data source 

when the environment is explored in a certain manner, a fast access 

time is necessary. The values in from the data source must be 

identical given identical input.  

 

• Choice of scenario to demonstrate environment generation or configuration. 

The environment chosen will determine the methods used in the adaptation 

of the data retrieved from the data source. The type of environment chosen 

must be wholly generatable given only a series of parameter inputs (though 

creator specified additional directives may be included to force the presence 

of a specific configuration in the output), and the environment generated 

must be identical given identical input. Almost any type of environment can 

be constructed in this manner.  

 

• Implementation of chosen scenario. 

Interactive prototypes of the chosen scenarios will be created in a suitable 

programming language. 
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Milestones: 

• Case studies of existing software incorporating procedural generation to create 

environment. 

• Case studies of existing software incorporating procedural generation to create 

other significant pieces of content. 

• Study, evaluation and implementation of suitable pseudo-random number 

sequence source. 

• Software prototype creating re-enterable 2D environment based on user input 

or system clock. 

• Software prototype creating re-enterable 3D environment based on user input 

or system clock. 

• Evaluations of software prototypes, to include comparisons with environments 

made with manual methods and discussion of possible enhancements or further 

work. 

 

Software and hardware constraints: 
There will be no hardware constraints enforced other than that of the use of a modern 

PC running Windows XP. 

 

There will be no software constraints other than the use of Windows XP and a suitable 

development suite. The project will aim to keep system resource use to a minimum, 

but no constraints will be put in place. 

 

Initial Ideas: 
A possible very effective source of pseudo-random numbers would be to simply take 

the ‘array index’ input to the function and return a convolution of it. For example, the 

MD5 hash function can be used to mapping the ‘array indices’ into a 128-bit value, 

creating a fully populated, pseudo-random source of numbers that can be queried at 

any location in linear time. 

 

Array index MD5 Hash 

0 CFCD208495D565EF66E7DFF9F98764DA 

1 C4CA4238A0B923820DCC509A6F75849B 

2 C81E728D9D4C2F636F067F89CC14862C 

3 ECCBC87E4B5CE2FE28308FD9F2A7BAF3 

4 A87FF679A2F3E71D9181A67B7542122C 

5 E4DA3B7FBBCE2345D7772B0674A318D5 

6 1679091C5A880FAF6FB5E6087EB1B2DC 

 



Mathew Carr Page 59  09/06/2009           a 

Page 59 of 66 

To attain the convoluted number when seeded with a given value, this could be 

achieved by multiplying the array index by the seed value, or some other function such 

as XOR. The hashes can be manipulated or interpreted in any way necessary. Multiple 

hashes can be combined if necessary. 

 

Using a pseudo-random number generator such as the Mersenne Twister or the ANSI 

C function may have disadvantages when it comes to attempting to retrieve numbers at 

a specific location within a sequence. If a separate random number generator sequence 

were used for multiple instances of an object (for example, the parameters of a given 

planet, of which there may be many), seeds would need to be stored, or a method for 

determining seeds defined. 

 

Possible ideas for a software prototype include the production of a 2D environment 

island scenario: 

• The island land shape could be expressed using any number of different 

methods, ranging from the simple drawing of a number of pseudo-randomly 

influenced shapes of land against a completely blank water ‘canvas’, or by 

more complex methods using overlapping samples of scaled Perlin noise to 

simulate a complex island formation. An even more involved simulation could 

simulate weather effects on the created land mass. 

• The island could possess a number of basic ‘zones’ such as grassland, beach or 

desert based on their positions from the coast of the island, among other 

factors. 

• Pseudo-randomly placed cities could be placed on the island where land 

permitted, up to a maximum amount or maximum density. 

• Roads could join together cities accessible within a certain criteria such as 

distance, if the island were to be analysed as a graph and a path finding 

algorithm applied. Roads would then automatically avoid ‘hazardous’ zones by 

assigning them a prohibitive cost, and road creation attempts between 

unfeasibly distance cities would be aborted 

 

Any one algorithm should produce the exact same island layout each time it is invoked 

using the same input seed to the pseudo random number generator. 

 

This is a basic and crude algorithm, but it can be used to great effect if not taken as an 

exact representation of the island, but instead used as a starting point for extrapolation. 

For example, ‘forest’ zones may exist as an irregular green area of colour in basic 

prototype software, but a more developed prototype would use the zone as a region 

within it could activate an automatic tree generation algorithm to populate the zone. 

Cities, represented by coloured rectangles on the basic prototype, would have their 

own building and road placement algorithm ran within their circle of influence. 

 

My use of the word ‘re-enterable’ applies only to the environment generated by the 

algorithm, i.e. its initial state after generation. If I were to create a simulation similar to 

Scorched Earth or Worms whereby the level would be automatically generated based 

on a number of parameters such as ‘number of hills’, ‘hill erraticity’, terrain 

deformation performed by the players during gameplay would not be retained if the 

randomly generated level were to be to re-generated at another date. In a game context, 
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such alterations to the environment’s state after generation would have to be recorded 

in a save game either as a complete set of the current state (meaning that procedural 

level regeneration would not be used to recover the saved game), or as a set of deltas 

representing the difference between the state as it was when the level was generated 

and the current state as it stands now (meaning that to recover the saved game, 

procedural regeneration would take place to restore the level, followed by the effects 

against the level stored in the save file). 

 

There are many articles on the use of procedural content generation. 

 

Ken Perlin has created a Java applet simulation of a procedurally defined planet that is 

rendered in increasing detail within a browser. 

http://www.mrl.nyu.edu/~perlin/demox/Planet.html 
 

This article by Sean O’Neil describes a way to generate the media needed to simulate a 

universe in real-time: 

http://www.gamasutra.com/features/20010302/oneil_01.htm 
 

Real time use of procedural generation can be CPU heavy. This article by Haim Barad, 

Mark Atkins, Or Gerlitz & Daniel Goehring describes how processor SIMD 

commands can be integrated manually into the routine as an enhancement (in 

available): 

http://www.gamasutra.com/features/19980501/mmxtexturing_01.htm 
 

There exists an in-depth wiki regarding the subject of procedural content generation in 

games. I will investigate a number of the games on their ‘Games Featuring Procedural 

Content Generation’ list in my report. 

http://pcg.wikidot.com/category-pcg-games 

 
Other games not included on the wiki will also be investigated such as Sim City, Lotus 

Turbo Challenge 3, Timestalkers and others. 

 

I will also keep searching for additional papers and other resources. 
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Outline plan of action: 

• Identify existing pieces of software incorporating procedural generation as part 

of their environment creation, and produce case studies. 

o The game genre known as ‘Roguelikes’ are a good basic example of 

this. 

 

• Identify existing pieces of software incorporating procedural generation to 

create other pieces of content, and produce case studies. 

o .kkrieger is a good example as it uses procedural generation to generate 

all of its models and textures from abstractions. 

 

• Identify pseudo-random number sequence generator. 

o This may take the form of a run-time speed comparison of various 

different alternatives. 

 

• Prepare presentation for delivery in December. 

 

• Produce software prototype creating re-enterable 2D environment based on 

user input or system clock. 

o I.e. the user can provide predictable input to produce the same level 

multiple times, or the system clock can provide an unpredictable one. 

 

• Produce software prototype creating re-enterable 3D environment based on 

user input or system clock. 

o This may be an extension of the above prototype, though it may not 

strictly simulate the same scenario. 
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Timetable: 
October, Week 5 to November, Week 4 

Produce case studies of existing software employing procedural generation of 

2D and 3D environments. Identify techniques which may be studied and expanded 

upon further within the project. 

 

November, Week 4 to November, Week 5 

 Design software prototypes to exemplify techniques identified previously. 

 

November, Week 5 

Investigate pseudo-random number sequence generators, and produce 

quantitative comparison. Upon identification of a suitable sequence generator, develop 

the necessary utility software to allow the generator to be used in subsequently 

developed prototypes. 

 

December, Week 1 

Prepare project presentation for delivery in subsequent week. Presentation to 

include discussion of case studies in progress up to this point, 

and any prototypes developed. 

 

December, Week 2 

Deliver project presentation to staff and students. 

 

December, Week 2 to January, Week 2 

Formalise research and prepare interim report for submission on or before 11
th

 

January 2009. 

 

January, Week 2 to March, Week 2 

Software implementation of prototypes designed in the previous year. 

Alterations to previous designs will be documented and discussed.  

 

March, Week 2 to April, Week 2 

Preparation of report, to include evaluation of software prototypes developed 

during the course of the project. Evaluation will include quantitative comparison 

between procedural content generation methods and manual content production 

methods. Suitable areas for further exploration will be identified, and possible methods 

of expansion will be discussed. 

 

April, Week 4 

Project submission date: 22
nd

 April 2009 
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Appendix D 
Project Management Log 
November, Week 1 

Produce case studies of existing software employing procedural generation of 

2D and 3D environments. Identify techniques which may be studied and expanded 

upon further within the project. 

 

My investigation into existing research has revealed a deep history of research 

into procedurally generated environments dating from over thirty years ago. These 

have been added to the section on References. 

 

 

November, Week 4 

I have developed a number of basic prototype applications demonstrating some 

of the basic techniques I will explore in my report. I have also begin formulating a 

model structure that will allow me to specify a ‘combination operations’ model linking 

together many different structures to create a complex terrain of a specific type. 

 

 

 

December, Week 1 

Prepare project presentation for delivery in subsequent week. Presentation to 

include discussion of case studies in progress up to this point, and any prototypes 

developed. 

 

I have prepared the presentation. 

 

December, Week 2 

Deliver project presentation to staff and students. 

 

  I have delivered the presentation to the project supervisor and other members 

of staff. 

 

December, Week 2 to January, Week 2 

Formalise research and prepare interim report for submission on or before 

11
th

 January 2009. 

 

  I have been in communication with the project supervisor. He has confirmed 

that there is no need for an interim report (in contradiction of some of the project 

guideline documents). No interim report was produced. 

 

January, Week 2 to March, Week 2 

Software implementation of prototypes designed in the previous year. 

Alterations to previous designs will be documented and discussed.  

 

I have begun implementing the composite model structure discussed 

previously. I will experiment with combining different stages to try and recreate a 

specific scenario. 
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March, Week 2 to April, Week 2 

Preparation of report, to include evaluation of software prototypes developed 

during the course of the project. Evaluation will include quantitative comparison 

between procedural content generation methods and manual content production 

methods. Suitable areas for further exploration will be identified, and possible 

methods of expansion will be discussed. 

 

I have composed a thorough report detailing my experiences in attempting to 

recreate an ‘island’ environment using procedural generation techniques. I believe I 

have been successful: the islands sufficiently resemble the specification I have 

proposed, and my model is fast enough to allow for an exploration of the parameter 

space to show how the model can be adapted to create environments with different 

characteristics. 

 

April, Week 4 

Project submission date: 22
nd

 April 2009 

 
  Project Submitted 
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